Abstract

We report initial results of a study aimed toward developing a computational fluid dynamics (CFD) model to simulate the laser-induced breakdown spectroscopy (LIBS) plume for the purpose of understanding the physical and chemical factors that control the LIBS signature. The kinetic model developed for modeling studies of the LIBS plume from metallic lead includes a set of air reactions and ion chemistry as well as the oxidization, excitation, and ionization of lead atoms. At total of 38 chemical species and 220 reactions are included in the model. Experimental measurements of the spatial and temporal dependence of a number of lead emission lines have been made of the LIBS plume from metallic lead. The mechanism of generation of excited Pb states in the LIBS plume is analyzed through kinetic modeling and sensitivity analysis. Initial CFD model results for the LIBS plume are presented.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Environmental Protection Agency, “EPA health effects notebook for hazardous air pollutants,” draft EPA-452/D-95-00, PB95-503579 (Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 1994).
  2. Agency for Toxic Substances and Disease Registry, Public Health Statement on Lead (U.S. Department of Health and Human Services, Atlanta, Ga., 1990).
  3. R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
    [CrossRef]
  4. A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
    [CrossRef]
  5. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
    [CrossRef]
  6. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  7. A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
    [CrossRef]
  8. A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
    [CrossRef]
  9. F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
    [CrossRef]
  10. J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
    [CrossRef]
  11. D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).
  12. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, computer code GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech .
  13. J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997).
    [CrossRef]
  14. D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
    [CrossRef]
  15. D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997).
    [CrossRef]
  16. A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).
  17. D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974).
    [CrossRef]
  18. N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).
    [CrossRef]
  19. J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
    [CrossRef]
  20. W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991).
    [CrossRef]
  21. M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
    [CrossRef]
  22. W. R. Anderson, M. A. Schroeder, “Chemical mechanism for ETC plasma interaction with air,” in Proceedings of the 36th Joint Army Navy NASA Air Force (JANNAF) Combustion Meeting, R. S. Fry, M. T. Gannaway, eds., CPIA Publ. 691 (Chemical Propulsion Information Agency, Columbia, Maryland, 1999), Vol. 2, pp. 43–54.
  23. L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
    [CrossRef]
  24. J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
    [CrossRef]
  25. N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
    [CrossRef]
  26. A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988).
    [CrossRef]
  27. D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974).
    [CrossRef]
  28. P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978).
    [CrossRef]
  29. D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986).
    [CrossRef]
  30. R. J. Donovan, H. M. Gillespie, “Reactions of atoms in ground and electronically excited states,” in Reaction Kinetics, P. G. Ashmore, ed. (Chemical Society, London, 1975), Vol. 1, pp. 14–92.
    [CrossRef]
  31. D. R. Jenkins, “The determination of cross-sections for the quenching of resonance radiation of metal atoms. V. Results for lead,” Proc. R. Soc. London Ser. A 313, 551–564 (1969).
    [CrossRef]
  32. P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
    [CrossRef]
  33. W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975).
    [CrossRef]
  34. C. H. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral Line Intensities (U.S. Government Printing Office, Washington, D.C., 1962).
  35. D. Husain, “The reactivity of electronically excited species,” Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977).
    [CrossRef]
  36. B. Nizamov, P. J. Dagdigian, “Collisional quenching and energy transfer of the z5DJo states of the Fe atom,” J. Phys. Chem. A 104, 6345–6350 (2000, 2001).
    [CrossRef]
  37. S. Rosenwaks, Department of Physics, University of the Negev, Beersheva, Israel (personal communication, 2001).
  38. W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79–110 (2000).
    [CrossRef]
  39. J. B. Hasted, Physics of Atomic Collisions (Butterworth, London, 1964).
  40. R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, C. F. Miller, Chemkin Collection, Release 3.7 computer code (Reaction Design, San Diego, Calif., 2002), http://www.reactiondesign.com .
  41. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
    [CrossRef]
  42. R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
    [CrossRef]
  43. R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001).
    [CrossRef]
  44. Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994).
    [CrossRef]
  45. C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
    [CrossRef]
  46. M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).
  47. M. J. Nusca, “Numerical simulation of the ram accelerator using a new chemical kinetics mechanism,” J. Propul. Power 18, 44–52 (2002).
    [CrossRef]
  48. M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
    [CrossRef]
  49. G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
    [CrossRef]
  50. G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
    [CrossRef]

2003 (2)

A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
[CrossRef]

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

2002 (3)

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

M. J. Nusca, “Numerical simulation of the ram accelerator using a new chemical kinetics mechanism,” J. Propul. Power 18, 44–52 (2002).
[CrossRef]

M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
[CrossRef]

2001 (7)

G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001).
[CrossRef]

C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
[CrossRef]

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

2000 (3)

L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
[CrossRef]

J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
[CrossRef]

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79–110 (2000).
[CrossRef]

1999 (2)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

1998 (1)

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

1997 (5)

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997).
[CrossRef]

D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997).
[CrossRef]

1994 (3)

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
[CrossRef]

Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994).
[CrossRef]

1992 (1)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

1991 (4)

A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).

W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991).
[CrossRef]

M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
[CrossRef]

N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).
[CrossRef]

1988 (1)

A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988).
[CrossRef]

1986 (1)

D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986).
[CrossRef]

1978 (1)

P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978).
[CrossRef]

1977 (1)

D. Husain, “The reactivity of electronically excited species,” Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977).
[CrossRef]

1975 (1)

W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975).
[CrossRef]

1974 (2)

D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974).
[CrossRef]

D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974).
[CrossRef]

1969 (1)

D. R. Jenkins, “The determination of cross-sections for the quenching of resonance radiation of metal atoms. V. Results for lead,” Proc. R. Soc. London Ser. A 313, 551–564 (1969).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
[CrossRef]

Aleksandrov, N. L.

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

Anderson, W. R.

M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
[CrossRef]

W. R. Anderson, M. A. Schroeder, “Chemical mechanism for ETC plasma interaction with air,” in Proceedings of the 36th Joint Army Navy NASA Air Force (JANNAF) Combustion Meeting, R. S. Fry, M. T. Gannaway, eds., CPIA Publ. 691 (Chemical Propulsion Information Agency, Columbia, Maryland, 1999), Vol. 2, pp. 43–54.

Aragón, C.

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
[CrossRef]

Barbini, R.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Barthélemy, O.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Baulch, D. L.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).

Bazelyan, E. M.

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

Benogoechea, J.

C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
[CrossRef]

Bose, D.

D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997).
[CrossRef]

Bozman, W. R.

C. H. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral Line Intensities (U.S. Government Printing Office, Washington, D.C., 1962).

Bozzelli, J. W.

J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
[CrossRef]

Bulatov, V.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Caiptelli, M.

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

Candler, G. V.

D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997).
[CrossRef]

Capitelli, M.

A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
[CrossRef]

G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

Casavola, A.

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Chaker, M.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Chang, A.

J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
[CrossRef]

Chang, C. H.

J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
[CrossRef]

Ciucci, A.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Cobos, C. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Cohen, N.

N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).
[CrossRef]

Colao, F.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Colonna, G.

A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
[CrossRef]

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
[CrossRef]

Corliss, C. H.

C. H. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral Line Intensities (U.S. Government Printing Office, Washington, D.C., 1962).

Cox, R. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Cross, P. J.

P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978).
[CrossRef]

Dagdigian, P. J.

B. Nizamov, P. J. Dagdigian, “Collisional quenching and energy transfer of the z5DJo states of the Fe atom,” J. Phys. Chem. A 104, 6345–6350 (2000, 2001).
[CrossRef]

Daniel, R. G.

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

De Giacomo, A.

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

Dean, A. M.

J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
[CrossRef]

Donovan, R. J.

R. J. Donovan, H. M. Gillespie, “Reactions of atoms in ground and electronically excited states,” in Reaction Kinetics, P. G. Ashmore, ed. (Chemical Society, London, 1975), Vol. 1, pp. 14–92.
[CrossRef]

Drysdale, D. D.

D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).

Duxbury, J.

D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).

Dyatko, N. A.

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

Fantoni, R.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Faris, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Frank, P.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

French, P. D.

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Garrett, B. C.

J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997).
[CrossRef]

Geddes, J.

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

Gelaason, R. L.

R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001).
[CrossRef]

Gilbody, H. B.

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

Gillespie, H. M.

R. J. Donovan, H. M. Gillespie, “Reactions of atoms in ground and electronically excited states,” in Reaction Kinetics, P. G. Ashmore, ed. (Chemical Society, London, 1975), Vol. 1, pp. 14–92.
[CrossRef]

Grant, S. J.

D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).

Green, D. S.

L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
[CrossRef]

Hahn, D. W.

R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001).
[CrossRef]

Harmon, R. S.

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Hasted, J. B.

J. B. Hasted, Physics of Atomic Collisions (Butterworth, London, 1964).

Hayman, G.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Herron, J. T.

L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
[CrossRef]

W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991).
[CrossRef]

Homan, B. E.

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

Hornung, H. G.

D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974).
[CrossRef]

Husain, D.

D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986).
[CrossRef]

P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978).
[CrossRef]

D. Husain, “The reactivity of electronically excited species,” Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977).
[CrossRef]

D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974).
[CrossRef]

Jenkins, D. R.

D. R. Jenkins, “The determination of cross-sections for the quenching of resonance radiation of metal atoms. V. Results for lead,” Proc. R. Soc. London Ser. A 313, 551–564 (1969).
[CrossRef]

Johnston, T. W.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Joseph, M. R.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Just, Th.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Kerr, J. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Kewley, D. J.

D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974).
[CrossRef]

Kochetov, I. V.

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

Krasniker, R.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Laville, S.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Le Drogoff, B.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Lee, Y.-L.

Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994).
[CrossRef]

Littler, J. G. F.

D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974).
[CrossRef]

Majidi, V.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Margot, J.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

McCartney, P. C. E.

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

McKee, M. L.

M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
[CrossRef]

McNesby, K. L.

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

McQuaid, M. J.

M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
[CrossRef]

Miller, J. A.

J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997).
[CrossRef]

Miziolek, A. W.

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

Morgan, W. L.

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79–110 (2000).
[CrossRef]

Murrells, T.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Nishijima, K.

A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988).
[CrossRef]

Nizamov, B.

B. Nizamov, P. J. Dagdigian, “Collisional quenching and energy transfer of the z5DJo states of the Fe atom,” J. Phys. Chem. A 104, 6345–6350 (2000, 2001).
[CrossRef]

Nusca, M. J.

M. J. Nusca, “Numerical simulation of the ram accelerator using a new chemical kinetics mechanism,” J. Propul. Power 18, 44–52 (2002).
[CrossRef]

M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
[CrossRef]

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

Page, M.

M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
[CrossRef]

Palleschi, V.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Park, J. H.

J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
[CrossRef]

Pfender, E.

J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
[CrossRef]

Pietanza, L. D.

G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
[CrossRef]

Pilling, M. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Rastelli, S.

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

Rosenwaks, S.

S. Rosenwaks, Department of Physics, University of the Negev, Beersheva, Israel (personal communication, 2001).

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sabsabi, M.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Sagear, P. A.

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

Schechter, I.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

Schroeder, M. A.

W. R. Anderson, M. A. Schroeder, “Chemical mechanism for ETC plasma interaction with air,” in Proceedings of the 36th Joint Army Navy NASA Air Force (JANNAF) Combustion Meeting, R. S. Fry, M. T. Gannaway, eds., CPIA Publ. 691 (Chemical Propulsion Information Agency, Columbia, Maryland, 1999), Vol. 2, pp. 43–54.

Sealy, I. P.

D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986).
[CrossRef]

Shah, M. B.

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

Sieck, L. W.

L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
[CrossRef]

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Sneddon, J.

Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994).
[CrossRef]

Soto, M. R.

M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
[CrossRef]

Starikovskii, A. Y.

A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).

Takahashi, A.

A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988).
[CrossRef]

Trajmar, S.

W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975).
[CrossRef]

Troe, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Tsang, W.

W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991).
[CrossRef]

Vidal, F.

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Wainer, R. T.

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

Walker, R. W.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Warnatz, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

Westberg, K. R.

N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).
[CrossRef]

Williams, W.

W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Zuev, A. P.

A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).

Adv. At. Mol. Opt. Phys. (1)

W. L. Morgan, “Electron collision data for plasma modeling,” Adv. At. Mol. Opt. Phys. 43, 79–110 (2000).
[CrossRef]

Appl. Phys. B (2)

A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, “Trace pollutants analysis in soil by time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1997).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Appl. Surf. Sci. (2)

A. Casavola, G. Colonna, M. Capitelli, “Non-equilibrium conditions during a laser induced plasma expansion,” Appl. Surf. Sci. 208, 85–89 (2003).
[CrossRef]

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

D. Husain, “The reactivity of electronically excited species,” Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977).
[CrossRef]

Chem. Phys. (1)

M. R. Soto, M. Page, M. L. McKee, “Theoretical study of the reaction of OH with HNO,” Chem. Phys. 153, 415–426 (1991).
[CrossRef]

Chem. Phys. Lett. (1)

D. J. Kewley, H. G. Hornung, “Free-piston shock-tube study of nitrogen dissociation,” Chem. Phys. Lett. 25, 531–536 (1974).
[CrossRef]

Crit. Rev. Anal. Chem. (2)

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Int. J. Chem. Kinet. (1)

J. A. Miller, B. C. Garrett, “Quantifying the non-RRKM effect in the H + O2 = OH + O reaction,” Int. J. Chem. Kinet. 29, 275–287 (1997).
[CrossRef]

J. Adv. Oxidation Technol. (1)

M. J. Nusca, R. G. Daniel, B. E. Homan, P. A. Sagear, A. W. Miziolek, “Analytical results and experimental studies of non-thermal plasmas for NOx control,” J. Adv. Oxidation Technol. 4, 271–278 (1999).

J. Chem. Phys. (1)

D. Bose, G. V. Candler, “Thermal rate constants of the O2 + N = NO + O reaction based on the 2A′ and 4A′ potential-energy surfaces,” J. Chem. Phys. 107, 6136–6145 (1997).
[CrossRef]

J. Photochem. (3)

D. Husain, J. G. F. Littler, “A kinetic study of lead atoms, Pb(63P0), by atomic absorption spectroscopy,” J. Photochem. 2, 247–253 (1974).
[CrossRef]

P. J. Cross, D. Husain, “Recombination of lead atoms,” J. Photochem. 9, 369–383 (1978).
[CrossRef]

D. Husain, I. P. Sealy, “The reaction of Pb(63P0) with N2O at elevated temperatures studied by time-resolved atomic resonance absorption spectroscopy,” J. Photochem. 35, 259–267 (1986).
[CrossRef]

J. Phys. B (2)

P. C. E. McCartney, M. B. Shah, J. Geddes, H. B. Gilbody, “Multiple ionization of lead by electron impact,” J. Phys. B 31, 4821–4831 (1998).
[CrossRef]

W. Williams, S. Trajmar, “Elastic and inelastic scattering of 40 eV electrons from atomic lead,” J. Phys. B 8, L50–L53 (1975).
[CrossRef]

J. Phys. Chem. A (1)

B. Nizamov, P. J. Dagdigian, “Collisional quenching and energy transfer of the z5DJo states of the Fe atom,” J. Phys. Chem. A 104, 6345–6350 (2000, 2001).
[CrossRef]

J. Phys. Chem. Ref. Data (3)

D. L. Baulch, C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, Th. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modelling. Supplement I,” J. Phys. Chem. Ref. Data 23, 847–1033 (1994).
[CrossRef]

N. Cohen, K. R. Westberg, “Chemical kinetic data sheets for high-temperature reactions. II,” J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).
[CrossRef]

W. Tsang, J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data 20, 609–663 (1991).
[CrossRef]

J. Phys. D (1)

N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, N. A. Dyatko, “The ionization kinetics and electric field in the leader channel in long air gaps,” J. Phys. D 30, 1616–1624 (1997).
[CrossRef]

J. Propul. Power (1)

M. J. Nusca, “Numerical simulation of the ram accelerator using a new chemical kinetics mechanism,” J. Propul. Power 18, 44–52 (2002).
[CrossRef]

J. Thermophys. Heat Transfer (2)

M. J. Nusca, M. J. McQuaid, W. R. Anderson, “Numerical model of the plasma jet generated by an electrothermal-chemical igniter,” J. Thermophys. Heat Transfer 16, 157–160 (2002).
[CrossRef]

A. Casavola, G. Colonna, A. De Giacomo, M. Caiptelli, “Laser ablation of titanium metallic targets: comparison between theory and experiment,” J. Thermophys. Heat Transfer 17, 225–231 (2003).
[CrossRef]

Jpn. J. Appl. Phys. Pt. 1 (1)

A. Takahashi, K. Nishijima, “Kinetic model of gas heating of laser-produced plasmas by CO2 laser in atmospheric air,” Jpn. J. Appl. Phys. Pt. 1, 37, 313–319 (1988).
[CrossRef]

Khim. Fiz. (1)

A. P. Zuev, A. Y. Starikovskii, “Reactions involving nitrogen oxides at high temperature: the unimolecular decay of N2O,” Khim. Fiz. 10, 52–63 (1991).

Microchem. J. (1)

Y.-L. Lee, J. Sneddon, “Ambient gas breakdown behavior in an excimer laser-ablated plasma,” Microchem. J. 50, 235–243 (1994).
[CrossRef]

Plasma Chem. Plasma Proc. (1)

L. W. Sieck, J. T. Herron, D. S. Green, “Chemical kinetics database and predictive schemes for humid air plasma. 1. Positive ion-molecule reactions,” Plasma Chem. Plasma Proc. 20, 235–258 (2000).
[CrossRef]

Plasma. Chem. Plasma Proc. (1)

J. H. Park, E. Pfender, C. H. Chang, “Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmospheric air,” Plasma. Chem. Plasma Proc. 20, 165–181 (2000).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

D. R. Jenkins, “The determination of cross-sections for the quenching of resonance radiation of metal atoms. V. Results for lead,” Proc. R. Soc. London Ser. A 313, 551–564 (1969).
[CrossRef]

Spectrochim. Acta Part B (7)

C. Aragón, J. Benogoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta Part B 56, 619–828 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta Part B 56, 609–618 (2001).
[CrossRef]

R. L. Gelaason, D. W. Hahn, “The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 419–430 (2001).
[CrossRef]

G. Colonna, L. D. Pietanza, M. Capitelli, “Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochim. Acta Part B 56, 587–598 (2001).
[CrossRef]

G. Colonna, A. Casavola, M. Capitelli, “Modeling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 567–586 (2001).
[CrossRef]

R. T. Wainer, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
[CrossRef]

F. Vidal, S. Laville, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air,” Spectrochim. Acta Part B 56, 973–986 (2001).
[CrossRef]

Symp. Internal Combust. Proc. (1)

J. W. Bozzelli, A. Chang, A. M. Dean, “Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure,” Symp. Internal Combust. Proc. 25, 965–974 (1994).
[CrossRef]

Other (10)

D. L. Baulch, D. D. Drysdale, J. Duxbury, S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Vol. 3. Homogeneous Gas Phase Reactions of the O2–O3 System, the CO—O2—H2 System, and of Sulphur-Containing Species (Butterworth, London, 1976).

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, Z. Qin, computer code GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech .

U.S. Environmental Protection Agency, “EPA health effects notebook for hazardous air pollutants,” draft EPA-452/D-95-00, PB95-503579 (Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 1994).

Agency for Toxic Substances and Disease Registry, Public Health Statement on Lead (U.S. Department of Health and Human Services, Atlanta, Ga., 1990).

W. R. Anderson, M. A. Schroeder, “Chemical mechanism for ETC plasma interaction with air,” in Proceedings of the 36th Joint Army Navy NASA Air Force (JANNAF) Combustion Meeting, R. S. Fry, M. T. Gannaway, eds., CPIA Publ. 691 (Chemical Propulsion Information Agency, Columbia, Maryland, 1999), Vol. 2, pp. 43–54.

R. J. Donovan, H. M. Gillespie, “Reactions of atoms in ground and electronically excited states,” in Reaction Kinetics, P. G. Ashmore, ed. (Chemical Society, London, 1975), Vol. 1, pp. 14–92.
[CrossRef]

C. H. Corliss, W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements Derived from the NBS Tables of Spectral Line Intensities (U.S. Government Printing Office, Washington, D.C., 1962).

S. Rosenwaks, Department of Physics, University of the Negev, Beersheva, Israel (personal communication, 2001).

J. B. Hasted, Physics of Atomic Collisions (Butterworth, London, 1964).

R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, C. F. Miller, Chemkin Collection, Release 3.7 computer code (Reaction Design, San Diego, Calif., 2002), http://www.reactiondesign.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Energy-level diagram for Pb i.

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Log-log plot of the time-dependent concentrations of the main species, computed with the kinetic model (initial mixture, air + 9% H2O + 0.1% Pb; initial temperature, 15,000 K; temperature 1/e decay time, 25 µs). Thus the temperature at 10 µs in this calculation is 10,050 K.

Fig. 4
Fig. 4

Log-log plot of the time-dependent concentrations of the ions computed with the kinetic model for the same conditions as for Fig. 3.

Fig. 5
Fig. 5

Log-log plot of the time-dependent concentrations of Pb atomic states computed with the kinetic model for the same conditions as for Fig. 3.

Fig. 6
Fig. 6

Contributions of various processes toward the production and consumption of Pb*5 computed with the kinetic model for the same conditions as for Fig. 3.

Fig. 7
Fig. 7

Time-dependent concentrations of excited, emitting Pb atomic states computed with the kinetic model (initial mixture, air + 3% H2O + 0.1% Pb; initial temperature, 15,000 K; temperature 1/e decay time, 25 µs).

Fig. 8
Fig. 8

Normalized sensitivity coefficients of the Pb*5 concentration to various reactions computed with the kinetic model for the same conditions as for Fig. 3. The level of reaction presentation is approximately 20% of the largest sensitivity coefficient.

Fig. 9
Fig. 9

Spectrum of the LIBS plume from metallic Pb. Lines that are due to Pb ii ions are marked; the others with wavelengths indicated are due to Pb I.

Fig. 10
Fig. 10

Measured time dependence of emission intensities of several Pb emission lines. Points, experimental data; smooth curves, exponential fits to the data.

Fig. 11
Fig. 11

Computed gray-scale (white to black, low to high values) contour plot of the gas density, from the CFD calculations.

Fig. 12
Fig. 12

Computed gray-scale (white to black, low to high values) plot of the Pb+ concentration, from the CFD calculations.

Tables (9)

Tables Icon

Table 1 Reactions Involving O2–N2–H2O Chemistry

Tables Icon

Table 2 Reactions Involving Air-Ion Chemistry

Tables Icon

Table 3 Reactions Involving Pb Atoms

Tables Icon

Table 4 Chemical Reactions and Quenching Processes Involving Excited Pb Levels

Tables Icon

Table 5 Collisional Activation Processes of Excited Pb Levelsa

Tables Icon

Table 6 Pb Atomic Energy Levels Included in the Kinetic Model

Tables Icon

Table 7 Lifetimes of Pb Atomic Energy Levels

Tables Icon

Table 8 Effect of Environmental Gas on the Production of Pb Excited Atomic States

Tables Icon

Table 9 Relative Concentrations of Pb Atomic States Computed in the Kinetic Model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Si,j=kj/Ci,maxCi/kj,

Metrics