Abstract

The spatial characterization of laser-induced plasmas, including their temperature, electron density, and relative atom density, has been carried out by emission spectroscopy. The plasmas were generated with iron samples in air and argon at atmospheric pressure. An imaging spectrometer equipped with an intensified CCD detector procured spectra with spatial resolution. The plasma characterization was made at three temporal gates (2–3, 5–6, and 9–11 µs) to permit the plasma’s evolution to be studied. A deconvolution procedure was developed to transform the measured intensity, integrated along the line of sight, into the radial distribution of emissivity. Temperature and electron density distributions were obtained under the assumption of local thermodynamic equilibrium and Stark broadening of the emission lines. The relative atom density distributions in the plasma of the Fe atoms arising from the sample and of the Ar atoms arising from the ambient gas were determined and evidenced an important interaction between the plasma and the surrounding atmosphere.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  2. K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
    [CrossRef]
  3. J. Sneddon, Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
    [CrossRef]
  4. K. J. Grant, G. L. Paul, “Electron temperature and density profiles of excimer laser-induced plasmas,” Appl. Spectrosc. 44, 1349–1354 (1990).
    [CrossRef]
  5. Y.-I. Lee, S. Sawan, T. L. Thiem, Y.-Y. Teng, J. Sneddon, “Interaction of a laser-beam with metals. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
    [CrossRef]
  6. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan, “Temporal and spatial behavior of electron density and temperature in a laser-produced plasma from YBa2Cu3O7,” Appl. Spectrosc. 52, 449–455 (1998).
    [CrossRef]
  7. B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
    [CrossRef]
  8. D. B. Geohegan, “Effects of ambient background gases on YBCO plume propagation under film growth conditions: spectroscopic, ion probe, and fast photographic studies,” in Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, E. Fogarassy, S. Lazare, eds. (North-Holland, Amsterdam, 1992), pp. 73–88.
  9. R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
    [CrossRef]
  10. F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).
  11. E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
    [CrossRef]
  12. J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Sur. Sci. 187–198, 273–280 (2002).
    [CrossRef]
  13. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
  14. K. Bockasten, “Transformation of observed radiances into radial distribution of the emission of a plasma,” J. Opt. Soc. Am. 51, 943–947 (1961).
    [CrossRef]
  15. J. R. Roberts, “Optical emission spectroscopy on the gaseous electronics conference rf reference cell,” J. Res. Natl. Inst. Stand. Technol. 100, 353–371 (1995).
    [CrossRef]
  16. W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 135–213.
  17. W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971).
    [CrossRef]
  18. H. Kurniawan, T. Kobayashi, K. Kagawa, “Effects of different atmospheres on the excitation process of TEA-CO2 laser-induced shock wave plasma,” Appl. Spectrosc. 4, 581–586 (1992).
    [CrossRef]
  19. F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
    [CrossRef]
  20. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
    [CrossRef]
  21. C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
    [CrossRef]
  22. J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
    [CrossRef]
  23. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  24. S. Freudenstein, J. Cooper, “Stark broadening of Fe i 5383 Å,” Astron. Astrophys. 71, 283–288 (1979).
  25. A. Thorne, U. Litzén, S. Johansson, Spectrophysics Principles and Aplications (Springer-Verlag, Berlin, 1999).
  26. NIST atomic spectra database, http://physics.nist.gov .
  27. F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
    [CrossRef]

2003 (1)

J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
[CrossRef]

2002 (1)

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Sur. Sci. 187–198, 273–280 (2002).
[CrossRef]

2001 (1)

C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
[CrossRef]

1999 (6)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
[CrossRef]

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

J. Sneddon, Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

1998 (1)

1997 (4)

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

1996 (1)

R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
[CrossRef]

1995 (1)

J. R. Roberts, “Optical emission spectroscopy on the gaseous electronics conference rf reference cell,” J. Res. Natl. Inst. Stand. Technol. 100, 353–371 (1995).
[CrossRef]

1992 (2)

H. Kurniawan, T. Kobayashi, K. Kagawa, “Effects of different atmospheres on the excitation process of TEA-CO2 laser-induced shock wave plasma,” Appl. Spectrosc. 4, 581–586 (1992).
[CrossRef]

Y.-I. Lee, S. Sawan, T. L. Thiem, Y.-Y. Teng, J. Sneddon, “Interaction of a laser-beam with metals. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

1990 (1)

1979 (1)

S. Freudenstein, J. Cooper, “Stark broadening of Fe i 5383 Å,” Astron. Astrophys. 71, 283–288 (1979).

1971 (1)

W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971).
[CrossRef]

1961 (1)

Aguilera, J. A.

J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
[CrossRef]

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Sur. Sci. 187–198, 273–280 (2002).
[CrossRef]

C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
[CrossRef]

E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Al-Wazzan, R. A.

R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
[CrossRef]

Aragón, C.

J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
[CrossRef]

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Sur. Sci. 187–198, 273–280 (2002).
[CrossRef]

C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
[CrossRef]

E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

Bengoechea, J.

J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
[CrossRef]

C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
[CrossRef]

Bindhu, C. V.

Bockasten, K.

Campeaux, C.

F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
[CrossRef]

Campos, J.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Castle, B. C.

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Catherinot, A.

F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
[CrossRef]

Cooper, J.

S. Freudenstein, J. Cooper, “Stark broadening of Fe i 5383 Å,” Astron. Astrophys. 71, 283–288 (1979).

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Faris, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Ferrero, F. S.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Freudenstein, S.

S. Freudenstein, J. Cooper, “Stark broadening of Fe i 5383 Å,” Astron. Astrophys. 71, 283–288 (1979).

Garrelie, F.

F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
[CrossRef]

Geohegan, D. B.

D. B. Geohegan, “Effects of ambient background gases on YBCO plume propagation under film growth conditions: spectroscopic, ion probe, and fast photographic studies,” in Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, E. Fogarassy, S. Lazare, eds. (North-Holland, Amsterdam, 1992), pp. 73–88.

Grant, K. J.

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

Harilal, S. S.

Hendron, J. M.

R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
[CrossRef]

Iijima, S.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Johansson, S.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics Principles and Aplications (Springer-Verlag, Berlin, 1999).

Kagawa, K.

H. Kurniawan, T. Kobayashi, K. Kagawa, “Effects of different atmospheres on the excitation process of TEA-CO2 laser-induced shock wave plasma,” Appl. Spectrosc. 4, 581–586 (1992).
[CrossRef]

Kobayashi, T.

H. Kurniawan, T. Kobayashi, K. Kagawa, “Effects of different atmospheres on the excitation process of TEA-CO2 laser-induced shock wave plasma,” Appl. Spectrosc. 4, 581–586 (1992).
[CrossRef]

Kokai, F.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Kurniawan, H.

H. Kurniawan, T. Kobayashi, K. Kagawa, “Effects of different atmospheres on the excitation process of TEA-CO2 laser-induced shock wave plasma,” Appl. Spectrosc. 4, 581–586 (1992).
[CrossRef]

Lee, Y.-I.

J. Sneddon, Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Y.-I. Lee, S. Sawan, T. L. Thiem, Y.-Y. Teng, J. Sneddon, “Interaction of a laser-beam with metals. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

Litzén, U.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics Principles and Aplications (Springer-Verlag, Berlin, 1999).

Lochte-Holtgreven, W.

W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 135–213.

Manrique, J.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Monge, E. M.

E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

Morrow, T.

R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
[CrossRef]

Nampoori, V. P. N.

Neidigh, R. V.

W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971).
[CrossRef]

Paul, G. L.

Peñalba, F.

Roberts, J. R.

J. R. Roberts, “Optical emission spectroscopy on the gaseous electronics conference rf reference cell,” J. Res. Natl. Inst. Stand. Technol. 100, 353–371 (1995).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sawan, S.

Shimizu, K.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Sneddon, J.

J. Sneddon, Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Y.-I. Lee, S. Sawan, T. L. Thiem, Y.-Y. Teng, J. Sneddon, “Interaction of a laser-beam with metals. Space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

Song, K.

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Takahashi, K.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Teng, Y.-Y.

Thiem, T. L.

Thorne, A.

A. Thorne, U. Litzén, S. Johansson, Spectrophysics Principles and Aplications (Springer-Verlag, Berlin, 1999).

Vallabhan, C. P. G.

Visser, K.

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

Winefordner, J. D.

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Wing, W. R.

W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971).
[CrossRef]

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Yudakasa, M.

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Zwegers, M.

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

Am. J. Phys. (1)

W. R. Wing, R. V. Neidigh, “A rapid Abel inversion,” Am. J. Phys. 39, 760–764 (1971).
[CrossRef]

Anal. Lett. (1)

J. Sneddon, Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Appl. Phys A (1)

F. Kokai, K. Takahashi, K. Shimizu, M. Yudakasa, S. Iijima, “Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization,” Appl. Phys A 69, S229–S234 (1999).

Appl. Phys. A (2)

E. M. Monge, C. Aragón, J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

F. Garrelie, C. Campeaux, A. Catherinot, “Expansion dynamics of the plasma plume created by laser ablation in a background gas,” Appl. Phys. A 69, S55–S58 (1999).
[CrossRef]

Appl. Phys. B (1)

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

K. Song, Y.-I. Lee, J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Appl. Sur. Sci. (1)

J. A. Aguilera, C. Aragón, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Sur. Sci. 187–198, 273–280 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

R. A. Al-Wazzan, J. M. Hendron, T. Morrow, “Spatially and temporally resolved emission intensities and number densities in low temperature laser-induced plasmas in vacuum and in ambient gases,” Appl. Surf. Sci. 96–98, 170–174 (1996).
[CrossRef]

Astron. Astrophys. (1)

S. Freudenstein, J. Cooper, “Stark broadening of Fe i 5383 Å,” Astron. Astrophys. 71, 283–288 (1979).

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

F. S. Ferrero, J. Manrique, M. Zwegers, J. Campos, “Determination of transition probabilities of 3d84p–3d84s lines of Ni ii by emission of laser-produced plasmas,” J. Phys. B 30, 893–903 (1997).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

J. R. Roberts, “Optical emission spectroscopy on the gaseous electronics conference rf reference cell,” J. Res. Natl. Inst. Stand. Technol. 100, 353–371 (1995).
[CrossRef]

Spectrochim. Acta B (2)

C. Aragón, J. Bengoechea, J. A. Aguilera, “Influence of the optical depth on spectral line emission from a laser-induced plasma,” Spectrochim. Acta B 56, 619–628 (2001).
[CrossRef]

J. A. Aguilera, J. Bengoechea, C. Aragón, “Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma,” Spectrochim. Acta B 58, 221–237 (2003).
[CrossRef]

Spectrochim. Acta Part B (1)

B. C. Castle, K. Visser, B. W. Smith, J. D. Winefordner, “Level populations in a laser-induced plasma on a lead target,” Spectrochim. Acta Part B 52, 1995–2009 (1997).
[CrossRef]

Other (5)

D. B. Geohegan, “Effects of ambient background gases on YBCO plume propagation under film growth conditions: spectroscopic, ion probe, and fast photographic studies,” in Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, E. Fogarassy, S. Lazare, eds. (North-Holland, Amsterdam, 1992), pp. 73–88.

W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 135–213.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

A. Thorne, U. Litzén, S. Johansson, Spectrophysics Principles and Aplications (Springer-Verlag, Berlin, 1999).

NIST atomic spectra database, http://physics.nist.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Emissivity E(r) and integrated intensity I(y) for a laser-induced plasma with cylindrical symmetry. (b) Model of the plasma proposed for carrying out the deconvolution.

Fig. 2
Fig. 2

Lateral profile of intensity for the CCD channel corresponding to the maximum of the 538.34-nm Fe i line, and the corresponding radial profile of emissivity, obtained after deconvolution. The axial distance was z = 1.25 mm, the plasma was generated in air, and the temporal gate was 5–6 µs.

Fig. 3
Fig. 3

Comparison of the spectrum of integrated intensity (solid curve) and the deconvoluted spectrum of emissivity (dashed curve) for the same lateral and radial position y = r = 0.23 mm at axial distance z = 1.25 mm.

Fig. 4
Fig. 4

Spatial distributions (a) of the integrated intensity and (b) of the deconvoluted emissivity of the 538.34-nm Fe i line obtained for a plasma generated in air at temporal gate 5–6 µs.

Fig. 5
Fig. 5

Spatial distributions of the emissivity of (a) the 538.34-nm and (b) the 542.97-nm Fe i lines and (c) the spatial distribution of the plasma temperature obtained from them. The plasma was generated in air, and the temporal gate was 5–6 µs.

Fig. 6
Fig. 6

Spatial distributions of temperature for the plasma formed in air (top row) and in Ar (bottom row) at the three temporal gates measured: 2–3 µs (left), 5–6 µs (center), and 9–11 µs (right).

Fig. 7
Fig. 7

Spatial distributions of electron density for the plasma formed in air (top row) and in Ar (bottom row) at the three temporal gates measured: 2–3 µs (left), 5–6 µs (center), and 9–11 µs (right). A logarithmic representation was chosen because of the wide range of values.

Fig. 8
Fig. 8

Spatial density distributions of neutral-Fe atoms for a plasma generated in air (top row) and in Ar (middle row) and of neutral-Ar atoms (bottom row). The three columns correspond to temporal gates 2–3 µs (left 1), 5–6 µs (center 2), and 9–11 µs (right). The arbitrary units employed are the same for all the distributions. For the Ar-atom density (bottom), a logarithmic representation was chosen because of the wide range of values.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Iy=2yRErrdrr2-y21/2,
Er=-1πrRIydyy2-r21/2,
Iy=2yyi+1Eirdrr2-y21/2+j=i+1n2 yjyj+1Ejrdrr2-y21/2.
Iy=EiFiy+Iextiy,
Fiy=2yi+12-y21/2,
Iextiy=2j=i+1nEjyj+12-y21/2-yj2-y21/2.
Ii=yiyi+1Iydy=EiFi+Iexti,
Fi=yiyi+1 Fiydy,
Iexti=yiyi+1 Iextiydy,
Ei=Ii-IextiFi.
E=line Eνdν=hcλNgjAjiZTexp-EjkT,
N=λhcZTEgjAjiexpEjkT.

Metrics