Abstract

A gas cell filled with argon gas under pressure is placed in a tightly focused laser beam to provide a limiter for laser pulses above a certain peak power, corresponding to the optical breakdown threshold for the creation of a laser-induced plasma. Measurements of the threshold intensity as a function of argon gas pressure are given for a laser wavelength of 1.064 μm (Nd:YAG) and a pulse length of 6.4 ns. Threshold intensities for optical breakdown in fused silica were measured with the same optical system, enabling a relative comparison of breakdown thresholds, of interest for protecting fused-silica optical components in fiber-optic delivery systems for laser material processing applications. The threshold intensity was measured to 220 GW/cm2 in Ar at 1.0 × 105 N/m2 (1 atm), 80 GW/cm2 in Ar at 8.0 × 105 N/m2 (7.9 atm), and 55 GW/cm2 in fused silica. Even though the threshold in argon is higher than that in fused silica, the limiter will protect the optical components if the laser beam is focused to a tighter spot in the gas cell than at the input end of the fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  2. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
    [CrossRef]
  3. R. Dewhurst, “Breakdown in the rare gases using single picosecond ruby pulses,” J. Appl. Phys. J. Phys. D. 10, 283–289 (1977).
    [CrossRef]
  4. C. L. M. Ireland, “Gas breakdown by single approximately 40 ps-50 ns, 1.06 μm laser pulses,” J. Appl. Phys. J. Phys. D 7, L179–L183 (1974).
    [CrossRef]
  5. A. Lenk, T. Witke, U. Franz, “Q-switched and mode-locked solid state laser for precision machining of transparent materials,” in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE3343, 895–902 (1998).
  6. R. G. Pinnick, P. Chylek, M. A. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
    [CrossRef] [PubMed]
  7. V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).
  8. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
    [CrossRef]

1988

1981

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

1977

R. Dewhurst, “Breakdown in the rare gases using single picosecond ruby pulses,” J. Appl. Phys. J. Phys. D. 10, 283–289 (1977).
[CrossRef]

1976

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

1975

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

1974

C. L. M. Ireland, “Gas breakdown by single approximately 40 ps-50 ns, 1.06 μm laser pulses,” J. Appl. Phys. J. Phys. D 7, L179–L183 (1974).
[CrossRef]

Akhmanov, S.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Aleshkevich, V. A.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Biswas, A.

Chylek, P.

Creegan, E.

Cremers, D. A.

L. J. Radziemski, D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Dewhurst, R.

R. Dewhurst, “Breakdown in the rare gases using single picosecond ruby pulses,” J. Appl. Phys. J. Phys. D. 10, 283–289 (1977).
[CrossRef]

Fernandez, G.

Franz, U.

A. Lenk, T. Witke, U. Franz, “Q-switched and mode-locked solid state laser for precision machining of transparent materials,” in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE3343, 895–902 (1998).

Ireland, C. L. M.

C. L. M. Ireland, “Gas breakdown by single approximately 40 ps-50 ns, 1.06 μm laser pulses,” J. Appl. Phys. J. Phys. D 7, L179–L183 (1974).
[CrossRef]

Jarzembski, M. A.

Kuznetsov, B.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Lenk, A.

A. Lenk, T. Witke, U. Franz, “Q-switched and mode-locked solid state laser for precision machining of transparent materials,” in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE3343, 895–902 (1998).

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

Soileau, M. J.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

Srivastava, V.

Sukhorukov, A.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Van Stryland, E. W.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

Williams, W. E.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

Witke, T.

A. Lenk, T. Witke, U. Franz, “Q-switched and mode-locked solid state laser for precision machining of transparent materials,” in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE3343, 895–902 (1998).

Zhdanov, B.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Appl. Opt.

J. Appl. Phys. J. Phys. D

C. L. M. Ireland, “Gas breakdown by single approximately 40 ps-50 ns, 1.06 μm laser pulses,” J. Appl. Phys. J. Phys. D 7, L179–L183 (1974).
[CrossRef]

J. Appl. Phys. J. Phys. D.

R. Dewhurst, “Breakdown in the rare gases using single picosecond ruby pulses,” J. Appl. Phys. J. Phys. D. 10, 283–289 (1977).
[CrossRef]

Phys. Rev. B

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2151 (1981).
[CrossRef]

Rep. Prog. Phys.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[CrossRef]

Sov. Phys. Tech. Phys.

V. A. Aleshkevich, S. Akhmanov, B. Zhdanov, B. Kuznetsov, A. Sukhorukov, “Frequency characteristics in optical breakdown of transparent solid dielectrics by nanosecond laser pulses,” Sov. Phys. Tech. Phys. 21, 975–979 (1976).

Other

L. J. Radziemski, D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

A. Lenk, T. Witke, U. Franz, “Q-switched and mode-locked solid state laser for precision machining of transparent materials,” in High-Power Laser Ablation, C. R. Phipps, ed., Proc. SPIE3343, 895–902 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of high-power fiber input coupling. (a) without gas cell, (b) with gas cell.

Fig. 2
Fig. 2

Setup for optical breakdown measurements. Nd:YAG laser beam is focused in the gas cell. Incident beam is sampled with Al2O3 diffuser and PIN diode detector D1. Transmitted beam is sampled similarly with a diffuser and detector D2. The aperture is used to minimize scattered light at detector D2. Recombination and scattered light are measured at right angles to the incident beam with detector D3. The filter is a high reflection mirror for λ = 1.064 μm and is alternately placed before detector D3 or removed.

Fig. 3
Fig. 3

Incident (solid curve) and transmitted power density (dashed curve) as a function of time in argon gas at 1.0 × 105 N/m2 (1 atm): (a) below optical breakdown threshold, (b) just above threshold, (c) well above threshold.

Fig. 4
Fig. 4

Optical breakdown threshold power density as a function of argon gas pressure. Incident pulse duration is 6.4 ns.

Fig. 5
Fig. 5

(a) Peak transmitted power as a function of peak incident power. (b) Transmitted pulse energy as a function of incident pulse energy. Parameter: argon gas pressure measured in atm. Incident pulse duration is 6.4 ns.

Fig. 6
Fig. 6

Side-emitted light above optical breakdown threshold in argon at atmospheric pressure. Upper curve, plasma recombination emission signal with λ = 1.064 μm rejection filter. Lower curve, difference between total and filtered signal representing scattered Nd:YAG light.

Fig. 7
Fig. 7

Incident (solid curve) and transmitted power density (dashed curve) in fused silica: (a) just above optical breakdown threshold, (b) intermediate level, (c) well above threshold. Permanent damage occurs, as expected in all cases.

Fig. 8
Fig. 8

Fused-silica damage threshold measured as (a) incident power density, (b) incident pulse energy density.

Tables (1)

Tables Icon

Table 1 Optical Breakdown Threshold Irradiance from Published Data

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I0=2Pπω02 .

Metrics