Abstract

Many observers have reported observations of green light emanating from severe thunderstorms in the midwestern United States. Spectral measurements have demonstrated that the dominant wavelength of the light is in the green portion of the visible spectrum and that this is not just a subjective impression. According to the theory proposed by Bohren and Fraser [Bull. Am. Meteorol. Soc. 74, 2185 (1993)], two effects combine to produce green light from thunderstorms. First, incident solar radiation is reddened by selective scattering by air molecules and particles in the atmosphere before it enters the cloud. Second, the radiation that passes through an optically thick cloud is attenuated in the longer wavelengths because of selective absorption by liquid water. Model calculations indicate that realizable combinations of mean drop diameters, mean liquid-water contents, and cloud thicknesses can satisfy the conditions required for shifting the dominant wavelength of the incident solar radiation to green.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Fraser, “Why green thunderstorms are severe,” presented at the Optical Society of America’s Topical Meeting on Meteorological Optics, Keystone, Colo., 28–29 August 1978.
  2. J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
    [CrossRef]
  3. G. D. Freier, Weather Proverbs (Fisher Books, Tucson, Ariz., 1992).
  4. C. F. Bohren, A. B. Fraser, “Green thunderstorms,” Bull. Am. Meteorol. Soc. 74, 2185–2193 (1993).
    [CrossRef]
  5. F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
    [CrossRef]
  6. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  7. C. L. Braun, S. N. Smirnov, “Why is water blue?” J. Chem. Educ. 70, 612–614 (1993).
    [CrossRef]
  8. G. Wyszecki, W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  9. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  10. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford, New York, 1989).
  11. H. Neckel, D. Labs, “The solar radiation between 3300 and 12 500 Å,” Solar Phys. 90, 205–258 (1984).
    [CrossRef]
  12. F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
    [CrossRef] [PubMed]
  13. K. Ya Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).
  14. J. D. Marwitz, “The structure and motion of severe hailstorms. I. Supercell storms,” J. Appl. Meteorol. 11, 166–179 (1972).
    [CrossRef]
  15. C. A. Knight, P. Squires, Hailstorms of the Central High Plains. I. The National Hail Research Experiment (Colorado Associated U. Press, Boulder, Colo., 1982).
  16. D. J. Musil, P. L. Smith, “Interior characteristics at mid-levels of thunderstorms in the southeastern United States,” Atmos. Res. 24, 149–167 (1989).
    [CrossRef]
  17. J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).
  18. J. M. Straka, J. R. Anderson, “Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX,” J. Atmos. Sci. 50, 1329–1348 (1993).
    [CrossRef]
  19. R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).
  20. F. W. Gallagher, “Green thunderstorms,” Ph.D. dissertation (University of Oklahoma, Norman, Okla., 1997).

1997 (1)

1996 (1)

F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
[CrossRef]

1993 (3)

J. M. Straka, J. R. Anderson, “Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX,” J. Atmos. Sci. 50, 1329–1348 (1993).
[CrossRef]

C. L. Braun, S. N. Smirnov, “Why is water blue?” J. Chem. Educ. 70, 612–614 (1993).
[CrossRef]

C. F. Bohren, A. B. Fraser, “Green thunderstorms,” Bull. Am. Meteorol. Soc. 74, 2185–2193 (1993).
[CrossRef]

1989 (2)

F. Kasten, A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
[CrossRef] [PubMed]

D. J. Musil, P. L. Smith, “Interior characteristics at mid-levels of thunderstorms in the southeastern United States,” Atmos. Res. 24, 149–167 (1989).
[CrossRef]

1986 (1)

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

1984 (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12 500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

1983 (1)

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

1972 (1)

J. D. Marwitz, “The structure and motion of severe hailstorms. I. Supercell storms,” J. Appl. Meteorol. 11, 166–179 (1972).
[CrossRef]

Anderson, J. R.

J. M. Straka, J. R. Anderson, “Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX,” J. Atmos. Sci. 50, 1329–1348 (1993).
[CrossRef]

Arnold, J.

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

Barnes, G. M.

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

Beasley, W. H.

F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
[CrossRef]

Bohren, C. F.

F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
[CrossRef]

C. F. Bohren, A. B. Fraser, “Green thunderstorms,” Bull. Am. Meteorol. Soc. 74, 2185–2193 (1993).
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Braun, C. L.

C. L. Braun, S. N. Smirnov, “Why is water blue?” J. Chem. Educ. 70, 612–614 (1993).
[CrossRef]

Dodge, J.

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

Evans, J.

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

Fankhauser, J. C.

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

Fraser, A. B.

C. F. Bohren, A. B. Fraser, “Green thunderstorms,” Bull. Am. Meteorol. Soc. 74, 2185–2193 (1993).
[CrossRef]

A. B. Fraser, “Why green thunderstorms are severe,” presented at the Optical Society of America’s Topical Meeting on Meteorological Optics, Keystone, Colo., 28–29 August 1978.

Freier, G. D.

G. D. Freier, Weather Proverbs (Fisher Books, Tucson, Ariz., 1992).

Fry, E. S.

Fujita, T. T.

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

Gallagher, F. W.

F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
[CrossRef]

F. W. Gallagher, “Green thunderstorms,” Ph.D. dissertation (University of Oklahoma, Norman, Okla., 1997).

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford, New York, 1989).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Isaac, G. A.

R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).

Kasten, F.

Knight, C. A.

C. A. Knight, P. Squires, Hailstorms of the Central High Plains. I. The National Hail Research Experiment (Colorado Associated U. Press, Boulder, Colo., 1982).

Kondratyev, K. Ya

K. Ya Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12 500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

MacPherson, J. I.

R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).

Marwitz, J. D.

J. D. Marwitz, “The structure and motion of severe hailstorms. I. Supercell storms,” J. Appl. Meteorol. 11, 166–179 (1972).
[CrossRef]

Miller, L. J.

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

Musil, D. J.

D. J. Musil, P. L. Smith, “Interior characteristics at mid-levels of thunderstorms in the southeastern United States,” Atmos. Res. 24, 149–167 (1989).
[CrossRef]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12 500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Pope, R. M.

Rostkowski, P. M.

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

Schemenauer, R. S.

R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).

Smirnov, S. N.

C. L. Braun, S. N. Smirnov, “Why is water blue?” J. Chem. Educ. 70, 612–614 (1993).
[CrossRef]

Smith, P. L.

D. J. Musil, P. L. Smith, “Interior characteristics at mid-levels of thunderstorms in the southeastern United States,” Atmos. Res. 24, 149–167 (1989).
[CrossRef]

Squires, P.

C. A. Knight, P. Squires, Hailstorms of the Central High Plains. I. The National Hail Research Experiment (Colorado Associated U. Press, Boulder, Colo., 1982).

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Straka, J. M.

J. M. Straka, J. R. Anderson, “Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX,” J. Atmos. Sci. 50, 1329–1348 (1993).
[CrossRef]

Strapp, J. W.

R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).

Wilson, G.

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Young, A. T.

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford, New York, 1989).

Appl. Opt. (2)

Atmos. Res. (1)

D. J. Musil, P. L. Smith, “Interior characteristics at mid-levels of thunderstorms in the southeastern United States,” Atmos. Res. 24, 149–167 (1989).
[CrossRef]

Bull. Am. Meteorol. Soc. (4)

J. Dodge, J. Arnold, G. Wilson, J. Evans, T. T. Fujita, “The cooperative Huntsville Meteorological Experiment (COHMEX),” Bull. Am. Meteorol. Soc. 67, 417–419 (1986).

J. C. Fankhauser, G. M. Barnes, L. J. Miller, P. M. Rostkowski, “Photographic documentation of some distinctive cloud forms observed beneath a large cumulonimbus,” Bull. Am. Meteorol. Soc. 64, 450–462 (1983).
[CrossRef]

C. F. Bohren, A. B. Fraser, “Green thunderstorms,” Bull. Am. Meteorol. Soc. 74, 2185–2193 (1993).
[CrossRef]

F. W. Gallagher, W. H. Beasley, C. F. Bohren, “Green thunderstorms observed,” Bull. Am. Meteorol. Soc. 77, 2889–2897 (1996).
[CrossRef]

J. Appl. Meteorol. (1)

J. D. Marwitz, “The structure and motion of severe hailstorms. I. Supercell storms,” J. Appl. Meteorol. 11, 166–179 (1972).
[CrossRef]

J. Atmos. Sci. (1)

J. M. Straka, J. R. Anderson, “Numerical simulations of microburst-producing storms: some results from storms observed during COHMEX,” J. Atmos. Sci. 50, 1329–1348 (1993).
[CrossRef]

J. Chem. Educ. (1)

C. L. Braun, S. N. Smirnov, “Why is water blue?” J. Chem. Educ. 70, 612–614 (1993).
[CrossRef]

Solar Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12 500 Å,” Solar Phys. 90, 205–258 (1984).
[CrossRef]

Other (9)

A. B. Fraser, “Why green thunderstorms are severe,” presented at the Optical Society of America’s Topical Meeting on Meteorological Optics, Keystone, Colo., 28–29 August 1978.

K. Ya Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).

R. S. Schemenauer, J. I. MacPherson, G. A. Isaac, J. W. Strapp, “Canadian participation in HIPLEX 1979,” Rep. APRB 110 P 34 (Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada, 1980).

F. W. Gallagher, “Green thunderstorms,” Ph.D. dissertation (University of Oklahoma, Norman, Okla., 1997).

G. Wyszecki, W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford, New York, 1989).

G. D. Freier, Weather Proverbs (Fisher Books, Tucson, Ariz., 1992).

C. A. Knight, P. Squires, Hailstorms of the Central High Plains. I. The National Hail Research Experiment (Colorado Associated U. Press, Boulder, Colo., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

CIE 1976 UCS chromaticity diagram showing the variation in chromaticity of a simulated cumulonimbus cloud with changes in cloud LWC. The LWC [g m-3] is shown next to the chromaticity points (in increments of 1 g m-3). The cloud thickness is 15 km, the mean drop diameter is 22 μm, and the solar zenith angle is 70°. D65 is the CIE 6500-K achromatic reference.

Fig. 2
Fig. 2

CIE 1976 UCS chromaticity diagram showing the variation in chromaticity of a simulated cumulonimbus cloud with changes in cloud LWC. The LWC [g m-3] is shown next to the chromaticity points (in increments of 0.5 g m-3). The cloud thickness is 15 km, the mean drop diameter is 5 μm, and the solar zenith angle is 55°. D65 is the CIE 6500-K achromatic reference.

Fig. 3
Fig. 3

Calculated spectrum (solid curve) for a 15-km-thick cloud with a 5-μm mean drop diameter and a LWC of 2.7 g m-3 compared to an observation (dashed curve) of a blue-green thunderstorm. The observation, with a dominant wavelength of 492.7 nm, was recorded on 31 May 1995 at 2232 UTC near Sweetwater, Texas.

Fig. 4
Fig. 4

CIE 1976 UCS chromaticity diagram showing the variation in chromaticity of a simulated cumulonimbus cloud with changes in cloud LWC. The LWC [g m-3] is shown next to the chromaticity points (in increments of 1 g m-3). The cloud thickness is 5 km, the mean drop diameters are 5 and 22 μm, and the solar zenith angle is 55°. The circle represents the chromaticity of the incident radiance. D65 is the CIE 6500-K achromatic reference.

Fig. 5
Fig. 5

Calculated spectrum (solid curve) for a 5-km-thick cloud with a 22-μm mean drop diameter and a LWC of 4.1 g m-3 compared to an observation (dashed curve) of a blue-green thunderstorm. The observation was recorded on 7 May 1995 at 2231 UTC in Mountain Park, Oklahoma.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ=3hldρw,
Fτ=F04K exp-Kτ31-g1-exp-2Kτ,
K=1-gdαf(n1/2.
fn=n3-n2-13/2n,

Metrics