Abstract

In this fourth of a series of papers that describe long-term cloud research at the Facility for Atmospheric Remote Sensing at Salt Lake City, Utah, an ∼10-year record of polarization lidar and photographic observations is analyzed to characterize the occurrence of optical displays in our local varieties of midlatitude cirrus clouds. The frequencies of occurrence of various types of halo, arc, and corona displays are evaluated according to their appearance and longevity over nominal 1-h observation periods and to the meteorological source of the cirrus. We find that complex halo-arc displays are rare at our locale and that even the so-called common 22° halo occurs infrequently as a complete long-lived ring. For example, only ∼6% of the 1561-h daytime cirrus periods have bright and prolonged 22° halos, although a total of 37.3% have some indications of this halo, even if they are brief and fragmentary. Other fairly frequent features are the 22° upper tangent arc (8.6%), 22° parhelia (8.5%), and solar corona (7.2%). Of the optical displays observed, 83.6% are refraction based, only 1.9% are due to reflection phenomena, and a surprising 15.4% are caused by diffraction. Complex halo-arc displays are disproportionally associated with cirrus formed in tropical or subtropical airflow and also contain more horizontally oriented planar ice crystals. Lidar linear depolarization ratios from a subset of vivid displays show significant differences between halo- and the corona-producing cirrus, reflecting the effects of particle shape. Halos are associated with relatively warm cirrus that contain randomly and horizontally oriented planar ice crystals, whereas the colder corona cirrus produce much stronger depolarization from crystals too small to be uniformly oriented. Comparisons are made with available information from other locales, and we attempt to explain the geographical differences in terms of basic cirrus cloud processes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed phase and ice crystal clouds. II. Angular depolarizing and multiple scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
    [CrossRef]
  2. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).
  3. K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [CrossRef] [PubMed]
  4. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellot, “Corona-producing ice clouds: a case study of a cold cirrus layer,” Appl. Opt. 37, 1477–1585 (1998).
    [CrossRef]
  5. K. Sassen, “Cirrus cloud iridescence: a rare case study,” Appl. Opt. 42, 486–491 (2003).
    [CrossRef] [PubMed]
  6. R. A. R. Tricker, Ice Crystal Halos, facsimile reproduction (Optical Society of America, Washington, D.C., 1979).
  7. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).
  8. W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysical Union, Washington, D.C., 1994).
    [CrossRef]
  9. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [CrossRef] [PubMed]
  10. K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
    [CrossRef]
  11. K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
    [CrossRef]
  12. K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. III. Radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001).
    [CrossRef]
  13. K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
    [CrossRef]
  14. S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
    [CrossRef]
  15. E. Tränkle, R. G. Greenler, “Multiple scattering effects in halo phenomena,” J. Opt. Soc. Am. A 4, 591–599 (1987).
    [CrossRef]
  16. S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).
  17. R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).
  18. S. Dobbie, P. Jonas, “Radiative influences on the structure and lifetime of cirrus clouds,” Q. J. R. Meteorol. Soc. 127, 2663–2682 (2001).
    [CrossRef]
  19. K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
    [CrossRef]
  20. P.-P. H. Verschure, “Thirty years of observing and documenting sky optical phenomena,” Appl. Opt. 37, 1585–1588 (1998).
    [CrossRef]
  21. M. Pekkola, “Finnish Halo Observing Network: search for rare halo phenomena,” Appl. Opt. 30, 3542–3544 (1991).
    [CrossRef]
  22. L. T. Crowley, M. Schroeder, “Halo frequencies,” unpublished report of the Halo Research Section of the German Arbertskrieses Meteore, Berlin, Germany, 1999.
  23. K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000).
    [CrossRef]
  24. J. Nelson, “Sublimation of ice crystals”,J. Atmos. Sci. 55, 910–919 (1998).
    [CrossRef]

2003

2001

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. III. Radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

S. Dobbie, P. Jonas, “Radiative influences on the structure and lifetime of cirrus clouds,” Q. J. R. Meteorol. Soc. 127, 2663–2682 (2001).
[CrossRef]

2000

1998

1994

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

1991

1987

E. Tränkle, R. G. Greenler, “Multiple scattering effects in halo phenomena,” J. Opt. Soc. Am. A 4, 591–599 (1987).
[CrossRef]

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

1980

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

1979

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed phase and ice crystal clouds. II. Angular depolarizing and multiple scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

1972

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

Benson, S.

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).

Blumenthal, G.

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

Campbell, J. R.

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

Comstock, J. M.

K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. III. Radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

Cox, S. K.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Crowley, L. T.

L. T. Crowley, M. Schroeder, “Halo frequencies,” unpublished report of the Halo Research Section of the German Arbertskrieses Meteore, Berlin, Germany, 1999.

Dobbie, S.

S. Dobbie, P. Jonas, “Radiative influences on the structure and lifetime of cirrus clouds,” Q. J. R. Meteorol. Soc. 127, 2663–2682 (2001).
[CrossRef]

Drinkwine, M.

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).

Greenler, R. G.

E. Tränkle, R. G. Greenler, “Multiple scattering effects in halo phenomena,” J. Opt. Soc. Am. A 4, 591–599 (1987).
[CrossRef]

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

Hallett, J.

Heymsfield, A. J.

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Jonas, P.

S. Dobbie, P. Jonas, “Radiative influences on the structure and lifetime of cirrus clouds,” Q. J. R. Meteorol. Soc. 127, 2663–2682 (2001).
[CrossRef]

Knight, N. C.

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Liou, K. N.

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed phase and ice crystal clouds. II. Angular depolarizing and multiple scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

Lock, J. A.

Mace, G. G.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellot, “Corona-producing ice clouds: a case study of a cold cirrus layer,” Appl. Opt. 37, 1477–1585 (1998).
[CrossRef]

Mallmann, A. J.

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

McDougal, D. S.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Nelson, J.

J. Nelson, “Sublimation of ice crystals”,J. Atmos. Sci. 55, 910–919 (1998).
[CrossRef]

Pekkola, M.

Poellot, M. R.

Randall, D. A.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Sassen, K.

K. Sassen, “Cirrus cloud iridescence: a rare case study,” Appl. Opt. 42, 486–491 (2003).
[CrossRef] [PubMed]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. III. Radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000).
[CrossRef]

K. Sassen, G. G. Mace, J. Hallett, M. R. Poellot, “Corona-producing ice clouds: a case study of a cold cirrus layer,” Appl. Opt. 37, 1477–1585 (1998).
[CrossRef]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[CrossRef] [PubMed]

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed phase and ice crystal clouds. II. Angular depolarizing and multiple scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

Schiffer, R. A.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Schroeder, M.

L. T. Crowley, M. Schroeder, “Halo frequencies,” unpublished report of the Halo Research Section of the German Arbertskrieses Meteore, Berlin, Germany, 1999.

Takano, Y.

K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000).
[CrossRef]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Tape, W.

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysical Union, Washington, D.C., 1994).
[CrossRef]

Tränkle, E.

Tricker, R. A. R.

R. A. R. Tricker, Ice Crystal Halos, facsimile reproduction (Optical Society of America, Washington, D.C., 1979).

Verschure, P.-P. H.

Wang, Z.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

Yang, L.

Am. Sci.

R. G. Greenler, M. Drinkwine, A. J. Mallmann, G. Blumenthal, “The origin of sun pillars,” Am. Sci. 60, 292–302 (1972).

Appl. Opt.

Bull. Am. Meteorol. Soc.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS. The Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the first ISCCP regional experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

J. Atmos. Sci.

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. III. Radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized light by water droplet, mixed phase and ice crystal clouds. II. Angular depolarizing and multiple scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

J. Nelson, “Sublimation of ice crystals”,J. Atmos. Sci. 55, 910–919 (1998).
[CrossRef]

J. Meteorol. Soc. Jpn.

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

J. Opt. Soc. Am. A

Q. J. R. Meteorol. Soc.

S. Dobbie, P. Jonas, “Radiative influences on the structure and lifetime of cirrus clouds,” Q. J. R. Meteorol. Soc. 127, 2663–2682 (2001).
[CrossRef]

Other

L. T. Crowley, M. Schroeder, “Halo frequencies,” unpublished report of the Halo Research Section of the German Arbertskrieses Meteore, Berlin, Germany, 1999.

R. A. R. Tricker, Ice Crystal Halos, facsimile reproduction (Optical Society of America, Washington, D.C., 1979).

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).

W. Tape, Atmospheric Halos, Vol. 64 of Antarctic Research Series (American Geophysical Union, Washington, D.C., 1994).
[CrossRef]

S. Benson, “Lidar depolarization study to infer cirrus cloud microphysics,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Probability-density function plot of the frequency of the total number of optical display types reported in each 1-h daylight period with optical displays.

Fig. 2
Fig. 2

Pie chart showing the breakdown of the major optical display types with respect to the total number of day optical display periods.

Fig. 3
Fig. 3

Comparison of the frequencies at which the three horizontally oriented planar ice crystal categories occur in the total night sample, total day with and without optics, day with no optics, and day with optical displays, broken down according to the overall visual effects of the displays (see the key, insert).

Fig. 4
Fig. 4

Comparison of the frequencies per month over the ∼10-year FARS record of optical displays caused by diffraction and the refraction-plus-reflection phenomena.

Fig. 5
Fig. 5

Comparison of lidar linear depolarization profiles versus ambient temperature for the subsets of eight vivid and prolonged 22° halo and five corona case studies relative to the mean FARS total day-plus-night sample from Ref. 10.

Tables (6)

Tables Icon

Table 1 Compilation of the 1-h Daylight Cirrus Periods That Yield the Total Number of Indicated Optical Display Types and Are Then Subdivideda

Tables Icon

Table 2 Categories Used To Characterize the Properties of Each of the Cirrus Cloud Optical Phenomena (over ∼1-h Periods) Listed in Table 1

Tables Icon

Table 3 Stratification of Optical Display Reports by a Measure of the Visual Qualitya of Each Type of Display

Tables Icon

Table 4 Percentage of 1-h Cirrus Periods Stratified by the Relative Occurrence of XLS, As in Table 1 a

Tables Icon

Table 5 Percentage of 1-h DayLight Periods Stratified by the Meteorological Source of the Cirrus, As in Table 1 a

Tables Icon

Table 6 Mean Cirrus Cloud Properties Associated with the Eight 22° Halo Case Studies, the Climatological Mean for the Entire FARS Midlatitude Cirrus Sample, and the Five Corona Case Studies

Metrics