Abstract

We investigate parameters associated with optical data storage in a variety of amorphous side-chain azobenzene-containing polyesters denoted as E1aX. The polyesters possess a common cyano-substituted azobenzene chromophore as a side chain, but differ in their main-chain polyester composition. Seventeen different polymers from the E1aX family divided into four classes, depending on the type of the main-chain substituent (one-, two-, and three-ring aromatic or alicyclic) have been thoroughly investigated. Various parameters characterizing the photoinduced birefringence in these materials, such as the response time, thermal and light stability, and long-term stability under ambient light at room temperature have been measured. Each of these parameters is quantitatively represented and therefore it is possible to make a clear comparison between the properties of the polymers. The results indicate that the long-term stability at ambient temperature is closely related to the thermal stability of the photoinduced birefringence. A strong correlation has also been found between the response time and the stability of the induced anisotropy toward illumination with unpolarized white light. One of the classes of E1aX polymers characterized by two-ring aromatic substituent in the main chain is a good candidate for optical data storage media. A recording energy of approximately 2 J/cm2 is sufficient to induce high refractive-index modulations of Δn = 0.13 in these materials, which is retained even at elevated temperatures (>130 °C). Long-term stability of greater than one year for the induced anisotropy has also been achieved.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography 1.: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  2. M. Eich, J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
    [CrossRef]
  3. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
    [CrossRef]
  4. L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
    [CrossRef]
  5. A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
    [CrossRef]
  6. A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
    [CrossRef]
  7. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  8. D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  9. P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
    [CrossRef]
  10. H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
    [CrossRef]
  11. W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
    [CrossRef]
  12. M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
    [CrossRef]
  13. M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
    [CrossRef]
  14. N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters,” Appl. Opt. 35, 4622–4627 (1996).
    [CrossRef] [PubMed]
  15. Linkam TMS ’93 Reference Manual (Linkam Scientific Instruments Ltd., No. 8 Epsom Donors Metro Centre, Waterfield, Tadworth, Surrey 5T20 5HT, UK), p. 6.
  16. R. H. Romer, Energy: An Introduction to Physics (W. H. Freeman, San Francisco, Calif., 1976) pp. 520, 578–579 (1976).
  17. J. Darnell, M. Jefferson, eds., New Renewable Resources: A Guide to the Future;…(World Energy Council, Kogan Page Ltd., London, 1994), p. 65.
  18. E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

2002

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
[CrossRef]

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

2001

H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
[CrossRef]

1996

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters,” Appl. Opt. 35, 4622–4627 (1996).
[CrossRef] [PubMed]

1995

M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

1987

M. Eich, J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
[CrossRef]

1984

1978

A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
[CrossRef]

Alexanian, V.

A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
[CrossRef]

Andruzzi, F.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Eich, M.

M. Eich, J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
[CrossRef]

Erdei, G.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Han, Y.

W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
[CrossRef]

Hasegawa, M.

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

Hassner, A.

A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
[CrossRef]

Ho, M. S.

M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

Holme, N. C. R.

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters,” Appl. Opt. 35, 4622–4627 (1996).
[CrossRef] [PubMed]

Hvilsted, S.

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters,” Appl. Opt. 35, 4622–4627 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Ikawa, T.

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

Joo, W.

W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
[CrossRef]

Kawatsuki, N.

H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
[CrossRef]

Kerekes, A.

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

Kerekes, Á.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Koppa, P.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Kowatari, N.

H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
[CrossRef]

Krepski, L.

A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
[CrossRef]

Kulinna, C.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lörincz, E.

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Matharu, A.

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

Natansohn, A.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

Nedelchev, L.

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

Nikolova, L.

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography 1.: A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

Oh, C.

W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
[CrossRef]

Ono, H.

H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
[CrossRef]

Ramanujam, P. S.

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters,” Appl. Opt. 35, 4622–4627 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Rochon, P.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

Romer, R. H.

R. H. Romer, Energy: An Introduction to Physics (W. H. Freeman, San Francisco, Calif., 1976) pp. 520, 578–579 (1976).

Sajti, Sz.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Siesler, H. W.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Sütö, A.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Szarvas, G.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Todorov, T.

Tomova, N.

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Tsuchimori, M.

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

Ujhelyi, F.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Ujvári, T.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Várhegyi, P.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Watanabe, O.

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

Wendorff, J. H.

M. Eich, J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Nedelchev, L. Nikolova, A. Matharu, P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B 75, 671–676 (2002).
[CrossRef]

Appl. Phys. Lett.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

J. Appl. Polym. Sci.

M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, “Photochemically induced birefringence in polyurethanes containing donor-acceptor azobenzenes as photoresponsive moieties,” J. Appl. Polym. Sci. 86, 17–22 (2002).
[CrossRef]

J. Phys. Chem. B

W. Joo, C. Oh, Y. Han, “Influence of the backbone on photoinduced birefringence in a poly(malonic ester) containing p-cyanoazobenzene,” J. Phys. Chem. B 106, 5378–5381 (2002).
[CrossRef]

Macromolecules

M. S. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage: 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995).
[CrossRef]

Makromol. Chem. Rapid Commun.

M. Eich, J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
[CrossRef]

Opt. Commun.

A. Kerekes, E. Lörincz, P. S. Ramanujam, S. Hvilsted, “Light scattering of thin azobenzene side-chain polyester layers,” Opt. Commun. 206, 57–65 (2002).
[CrossRef]

Opt. Mater.

H. Ono, N. Kowatari, N. Kawatsuki, “Holographic grating generation in thick polymer films containing azo dye molecules,” Opt. Mater. 17, 387–394 (2001).
[CrossRef]

Tetrahedron

A. Hassner, L. Krepski, V. Alexanian, “Aminopyridines as acylation catalysts for tertiary alcohols,” Tetrahedron 34, 2069–2076 (1978).
[CrossRef]

Other

Linkam TMS ’93 Reference Manual (Linkam Scientific Instruments Ltd., No. 8 Epsom Donors Metro Centre, Waterfield, Tadworth, Surrey 5T20 5HT, UK), p. 6.

R. H. Romer, Energy: An Introduction to Physics (W. H. Freeman, San Francisco, Calif., 1976) pp. 520, 578–579 (1976).

J. Darnell, M. Jefferson, eds., New Renewable Resources: A Guide to the Future;…(World Energy Council, Kogan Page Ltd., London, 1994), p. 65.

E. Lörincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sütö, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, P. S. Ramanujam, “Polarization holographic data storage using azobenzene polyester as storage material,” in Organic Photonic Materials and Dences V, J. G. Grote, T. Kaino, eds., Proc. SPIE4991 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Generalized synthetic pathway for azopolyesters E1aX.

Fig. 2
Fig. 2

Absorption spectra of solutions of (a) E1aP and (b) E1aBiph in tetrahydrofuran.

Fig. 3
Fig. 3

Scheme of the experimental setup. Sh, beam shutter; Pol, polarizer; M, mirror; HWP, half-wave plate; S, sample; HS, hot stage; TCB, temperature control block; HL, halogen lamp and PC, personal computer.

Fig. 4
Fig. 4

Typical recording curves for the E1aX polymers (here X = A, 34Biph and Biph) at intensity 700 mW/cm2.

Fig. 5
Fig. 5

Typical view of the data obtained from a thermal stability measurement for an E1aX polymer. The circle indicates the maximal value of the photoinduced anisotropy during recording δrec, and the square — the anisotropy value δ30min after 30 min at 25 °C.

Fig. 6
Fig. 6

Behavior of the anisotropy induced in E1aA and E1aN at elevated temperatures.

Fig. 7
Fig. 7

Dependences of T 50% and T erase on the heating rate used for the thermal stability measurement.

Fig. 8
Fig. 8

Experimental data from the light stability measurement of E1aBiph.

Fig. 9
Fig. 9

Comparison between the anisotropy decay curve in the three cases: (1) ambient light, room temperature (25 °C); (2) ambient light, but elevated temperature (50 °C), corresponding to the temperature during the bright light illumination and last (3), the combined action of the bright light and heat induced by the illumination (ca. 50 °C). (a) Low thermal-stability polymer (E1aC; T 50% = 90 °C) and (b) high thermal-stability polymer (E1aBiph; T 50% = 145 °C).

Fig. 10
Fig. 10

Long-term decay behaviour of four polymers representing the four classes (one-ring, two-ring systems, etc.) of the E1aX family.

Fig. 11
Fig. 11

Dependences between the different parameters describing the behavior of the photoinduced anisotropy in the E1aX polymers: (a) temporal versus thermal stability; (b) light stability versus response time; (c) light stability versus thermal stability; and (d) temporal stability obtained from 1 week versus 0.5 h measurement. The polymers are denoted by their numbers as given in Table 2. The dashed lines in all plots are given to guide the eye.

Fig. 12
Fig. 12

Correlation between the glass transition temperature (T g) obtained from differential scanning calorimetry measurements and the temperature of complete erasure of the optical birefringence. The higher values of T erase compared with T g in some cases could be ascribed to the influence of the heating rate on the value of T erase as indicated in Fig. 7. The polymers are denoted by their numbers as given in Table 2.

Tables (2)

Tables Icon

Table 1 Glass Transition Temperatures (T g ) of E1aX Polymers

Tables Icon

Table 2 Optical Characteristics (Birefringence and Its Stability) of all E1aX Polyesters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ=arctanS3S2.
Δn=λδπd,
r30min=δ30minδrec
Tt=t-t0* heating rate+T0,

Metrics