Abstract

A novel, noninvasive measurement technique for quantitative cellular analysis is presented that utilizes the forces generated by an optical beam to evaluate the physical properties of live cells in suspension. In this analysis, a focused, near-infrared laser line with a high cross-sectional intensity gradient is rapidly scanned across a field of cells, and the interaction of those cells with the beam is monitored. The response of each cell to the laser depends on its size, structure, morphology, composition, and surface membrane properties; therefore, with this technique, cell populations of different type, treatment, or biological state can be compared. To demonstrate the utility of this cell analysis platform, we evaluated the early stages of apoptosis induced in the U937 cancer cell line by the drug camptothecin and compared the results with established reference assays. Measurements on our platform show detection of cellular changes earlier than either of the fluorescence-based Annexin V or caspase assays. Because no labeling or additional cell processing is required and because accurate assays can be performed with a small number of cells, this measurement technique may find suitable applications in cell research, medical diagnostics, and drug discovery.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

Tobias J. Moritz, Douglas S. Taylor, Denise M. Krol, John Fritch, and James W. Chan
Biomed. Opt. Express 1(4) 1138-1147 (2010)

A quantitative method for measurement of HL-60 cell apoptosis based on diffraction imaging flow cytometry technique

Xu Yang, Yuanming Feng, Yahui Liu, Ning Zhang, Wang Lin, Yu Sa, and Xin-Hua Hu
Biomed. Opt. Express 5(7) 2172-2183 (2014)

NADH fluorescence as a photobiological metric in 5-aminolevlinic acid (ALA)-photodynamic therapy

Guan-Chin Su, Yau-Huei Wei, and Hsing-Wen Wang
Opt. Express 19(22) 21145-21154 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription