Abstract

A wavelength-switching method for tuning a self-injection-seeded Ti3+:sapphire laser that uses an electro-optic beam deflection technique is reported. A LiNbO3 prism was employed in a tuning arm of the dual-cavity Ti3+:sapphire laser, and wavelength tuning of approximately 94 pm was attained by altering the deflection angle with the application of an electric field of 10 kV/cm to the prism. The spectral characteristics of the output laser were mainly determined by the diffraction grating in the dual-cavity laser, and the electro-optic prism just behaved as a light-beam deflector for the wavelength tuning purpose. This configuration can allow a simple tuning approach where fast and stable electronic wavelength switching is required in a narrow tuning range, on an order between a few tens of picometers to nanometers, without involving any mechanical movement.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Steele, D. C. Gerstenberger, A. Drobashoff, R. W. Wallace, “Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system,” Opt. Lett. 16, 399–401 (1991).
    [CrossRef] [PubMed]
  2. M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
    [CrossRef]
  3. B. Pati, J. Borysow, “Single-mode tunable Ti:sapphire laser over a wide frequency range,” Appl. Opt. 36, 9337–9341 (1997).
    [CrossRef]
  4. K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
    [CrossRef]
  5. N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
    [CrossRef]
  6. N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
    [CrossRef]
  7. A. J. Tiffany, L. T. McKinnie, D. M. Warrington, “Low-threshold, single-frequency, coupled cavity Ti:sapphire laser,” Appl. Opt. 36, 4989–4992 (1997).
    [CrossRef] [PubMed]
  8. H. Walther, J. L. Hall, “Tunable dye laser with narrow spectral output,” Appl. Phys. Lett. 17, 239–242 (1970).
    [CrossRef]
  9. S. Wada, K. Akagawa, H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
    [CrossRef] [PubMed]
  10. N. Saito, S. Wada, H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18, 1288–1296 (2001).
    [CrossRef]
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), chap. 7.
  12. J. F. Lotspeich, “Electrooptic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
    [CrossRef]
  13. D. K. Ko, G. Lim, S. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
    [CrossRef] [PubMed]
  14. A. J. Merriam, G. Y. Yin, “Efficient self-seeding of a pulsed Ti3:Al2O3 laser,” Opt. Lett. 23, 1034–1036 (1998).
    [CrossRef]
  15. M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
    [CrossRef]
  16. F.M. Phelps, Wavelengths by Elements M. I. T. Wavelength Tables (Massachusetts Institute of Technology, Cambridge, Mass., 1982), Vol. 2.
  17. R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
    [CrossRef]

2001 (2)

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

N. Saito, S. Wada, H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18, 1288–1296 (2001).
[CrossRef]

1999 (1)

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

1998 (1)

1997 (3)

1996 (2)

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

S. Wada, K. Akagawa, H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
[CrossRef] [PubMed]

1995 (1)

1993 (2)

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

1991 (1)

1970 (1)

H. Walther, J. L. Hall, “Tunable dye laser with narrow spectral output,” Appl. Phys. Lett. 17, 239–242 (1970).
[CrossRef]

1968 (1)

J. F. Lotspeich, “Electrooptic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

Akagawa, K.

Borysow, J.

Boyland, A. J.

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

Cha, B. H.

Drobashoff, A.

Eason, R. W.

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

Funayama, M.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

Gerstenberger, D. C.

Hall, J. L.

H. Walther, J. L. Hall, “Tunable dye laser with narrow spectral output,” Appl. Phys. Lett. 17, 239–242 (1970).
[CrossRef]

Ikuta, K.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Izumi, J.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Kawada, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Kim, S.

Ko, D. K.

Lee, J.

Lim, G.

Lotspeich, J. F.

J. F. Lotspeich, “Electrooptic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

Maeda, M.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Mailis, S.

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

McKinnie, L. T.

Merriam, A. J.

Morishita, K.

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

Morita, H.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Mukaihara, K.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

Nakagawa, J.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Noda, Y.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Okada, T.

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Oki, Y.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Parhat, H.

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

Pati, B.

Phelps, F.M.

F.M. Phelps, Wavelengths by Elements M. I. T. Wavelength Tables (Massachusetts Institute of Technology, Cambridge, Mass., 1982), Vol. 2.

Saito, N.

Smith, P. G. R.

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

Steele, T. R.

Tashiro, H.

Tiffany, A. J.

Tomonaga, N.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Tsumura, Y.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Uchino, O.

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

Uchiumi, M.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Vasa, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Vasa, N. J.

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

Wada, S.

Wallace, R. W.

Walther, H.

H. Walther, J. L. Hall, “Tunable dye laser with narrow spectral output,” Appl. Phys. Lett. 17, 239–242 (1970).
[CrossRef]

Warrington, D. M.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), chap. 7.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), chap. 7.

Yin, G. Y.

Yoshikane, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Walther, J. L. Hall, “Tunable dye laser with narrow spectral output,” Appl. Phys. Lett. 17, 239–242 (1970).
[CrossRef]

IEEE Spectrum (1)

J. F. Lotspeich, “Electrooptic light-beam deflection,” IEEE Spectrum 5, 45–52 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (2)

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada, “Differential absorption lidar at 1.67 µm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. Part 1 38, 110–114 (1999).
[CrossRef]

N. J. Vasa, T. Okada, M. Maeda, O. Uchino, “Mechanism of a tuning operation of a Ti:sapphire laser by injection seeding,” Jpn. J. Appl. Phys. Part 1 35, 4333–4337 (1996).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, Y. Noda, M. Maeda, “Widely tunable operation of Ti:sapphire lasers under optimum coupling condition,” Jpn. J. Appl. Phys. Part 2 32, L1332–L1334 (1993).
[CrossRef]

Opt. Commun. (2)

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, M. Maeda, “Continuously tunable coherent source over 202–3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457–460 (1993).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

Opt. Lett. (4)

Opt. Rev. (1)

N. J. Vasa, K. Morishita, H. Parhat, T. Okada, M. Maeda, O. Uchino, “Tunable single-mode pulsed Ti3+:sapphire laser injection-seeded by a continuous-wave Cr3+:LiSrAlF6 laser,” Opt. Rev. 4, 176–179 (1997).
[CrossRef]

Other (2)

F.M. Phelps, Wavelengths by Elements M. I. T. Wavelength Tables (Massachusetts Institute of Technology, Cambridge, Mass., 1982), Vol. 2.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of a dual-cavity, self-injection-seeded Ti3+:sapphire laser with a LiNbO3 prism in a tuning arm.

Fig. 2
Fig. 2

Fabry-Perot interferograms of Ti3+:sapphire laser at different electro-optic voltages, (a) without and (b)–(e) with the application of voltage to the prism and (f) when the voltage is reduced to zero. Free spectral range = 1.66 cm-1.

Fig. 3
Fig. 3

Tunable range of Ti3+:sapphire laser with respect to the applied electric field to the prism.

Fig. 4
Fig. 4

An example of optogalvanic spectrum obtained with electro-optic tuning around 785 nm.

Fig. 5
Fig. 5

Estimated tunable range of Ti3+:sapphire laser with respect to the applied electric field to different configurations of LiNbO3 sample with π- and σ-polarized laser beams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δδ=11-y121/2sinαnn2-sin2θi1/2Δn,

Metrics