Abstract

We propose optical polarization imaging as a minimally invasive technique for measuring the mechanical properties of plastics and soft tissues through their change in reflectance properties with applied strain or force. We suggest that changes in surface roughness are responsible for the linear reflectivity changes with applied stretch or strain. Several aspects of this model are tested, including the dependence on the angle of incidence, the change in scattering and absorption coefficients with strain, and the lateral spatial resolution. The application of the technique to multilayer structures such as skin and competing optical effects such as laser speckle are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef] [PubMed]
  2. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
    [CrossRef] [PubMed]
  3. E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
    [CrossRef]
  4. J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).
  5. S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
    [CrossRef] [PubMed]
  6. M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.
  7. J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
    [CrossRef]
  8. N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
    [CrossRef] [PubMed]
  9. J. Ferguson, J. C. Barbenel, “Skin surface patterns and the directional mechanical properties of the dermis,” in Bioengineering and the Skin, R. Marks, P. A. Payne, eds. MTP Press, Lancaster, UK, (1981), pp. 88–92.
  10. E. W. Swokowski, Calculus with Analytic Geometry, 2nd ed. (Prindle, Weber and Schmidt, Boston, Mass., 1979).
  11. S. A. Prahl, M. J. C. van Gemert, A. J. Welch. “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  12. A. Weeks, Fundamentals of Electronic Image Processing (IEEE, New York, 1996), Chaps. 3 and 6.
  13. T. Asakura, Speckle Metrology (Academic, New York, 1978), Chap. 8.
  14. M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
    [CrossRef] [PubMed]
  15. S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
    [PubMed]
  16. H. Gray, L. H. Bannister, M. M. Berry, P. L. Williams, eds., Gray’s Anatomy (Churchill Livingstone, London, 1995), pp. 376–381.
  17. I. A. Brown, “A scanning electron microscope study of the effects of uniaxial tension on human skin,” Br. J. Dermatol. 89, 383–390 (1973).
    [CrossRef] [PubMed]

2003

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

2000

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

1999

1997

1994

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

1993

1991

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

1989

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

1988

J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).

1979

S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
[PubMed]

1973

I. A. Brown, “A scanning electron microscope study of the effects of uniaxial tension on human skin,” Br. J. Dermatol. 89, 383–390 (1973).
[CrossRef] [PubMed]

Agache, P.

S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
[PubMed]

Alfano, R. R.

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

Asakura, T.

T. Asakura, Speckle Metrology (Academic, New York, 1978), Chap. 8.

Assoul, M.

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

Barbenel, J. C.

S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
[PubMed]

J. Ferguson, J. C. Barbenel, “Skin surface patterns and the directional mechanical properties of the dermis,” in Bioengineering and the Skin, R. Marks, P. A. Payne, eds. MTP Press, Lancaster, UK, (1981), pp. 88–92.

Brown, I. A.

I. A. Brown, “A scanning electron microscope study of the effects of uniaxial tension on human skin,” Br. J. Dermatol. 89, 383–390 (1973).
[CrossRef] [PubMed]

Carter, N. J.

J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).

Chaudhry, H. R.

Chauhdry, H. R.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

Corcuff, P.

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

Demos, S. G.

Fariza, E.

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

Federici, J. F.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

Ferguson, J.

J. Ferguson, J. C. Barbenel, “Skin surface patterns and the directional mechanical properties of the dermis,” in Bioengineering and the Skin, R. Marks, P. A. Payne, eds. MTP Press, Lancaster, UK, (1981), pp. 88–92.

Findley, T.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

Guzelsu, N.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.

Jalkh, A. E.

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

Jannuzzi, G.

Lee, K.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Lenn, C. P.

J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).

Lim, H. C.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

Makki, S.

S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
[PubMed]

Medina, A.

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

Mignot, J.

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

O’Day, T.

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

Ostermeyer, M. B.

M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.

Philp, J.

J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).

Prahl, S. A.

Ritter, A. B.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, A. B. Ritter, “Noninvasive light reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

Roman, J. R.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Stephensen, D. V.

M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.

Swokowski, E. W.

E. W. Swokowski, Calculus with Analytic Geometry, 2nd ed. (Prindle, Weber and Schmidt, Boston, Mass., 1979).

van Gemert, M. J. C.

Wang, L.

M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.

Weeks, A.

A. Weeks, Fundamentals of Electronic Image Processing (IEEE, New York, 1996), Chaps. 3 and 6.

Welch, A. J.

Zahidi, M.

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

Acta Derm. Venereol.

S. Makki, J. C. Barbenel, P. Agache, “A quantitative method for the assessment of the microtopography of human skin,” Acta Derm. Venereol. 59, 285–291 (1979).
[PubMed]

Appl. Opt.

Arch. Dermatol.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago)

E. Fariza, T. O’Day, A. E. Jalkh, A. Medina, “Use of cross-polarized light in anterior segment photography,” Arch. Ophthalmol. (Chicago) 107, 608–610 (1989).
[CrossRef]

Br. J. Dermatol.

I. A. Brown, “A scanning electron microscope study of the effects of uniaxial tension on human skin,” Br. J. Dermatol. 89, 383–390 (1973).
[CrossRef] [PubMed]

J. Biomed. Opt.

N. Guzelsu, J. F. Federici, H. C. Lim, H. R. Chauhdry, A. B. Ritter, T. Findley, “Measurement of skin stretch via light reflection,” J. Biomed. Opt. 8, 80–86 (2003).
[CrossRef] [PubMed]

J. Med. Eng. Technol.

M. Assoul, M. Zahidi, P. Corcuff, J. Mignot, “Three-dimensional measurements of skin surface topography by triangulation with a new laser profilometer,” J. Med. Eng. Technol. 18, 11–21 (1994).
[CrossRef] [PubMed]

J. Soc. Cosmet. Chem.

J. Philp, N. J. Carter, C. P. Lenn, “Improved optical discrimination of skin with polarized light,” J. Soc. Cosmet. Chem. 39, 121–132 (1988).

Lasers Surg. Med.

S. L. Jacques, J. R. Roman, K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef] [PubMed]

Other

M. B. Ostermeyer, D. V. Stephensen, L. Wang, S. L. Jacques, “Nearfield polariztion effects on light propagation in random media,” in Biomedical Optical Spectroscopy and Diagnostics, E. Serick-Muraca, D. Benaron, eds., Vol. 3 of USA Trends in Optics and Photonics (Optical Society of America, Washington D. C., 1996), pp. 20–25.

J. Ferguson, J. C. Barbenel, “Skin surface patterns and the directional mechanical properties of the dermis,” in Bioengineering and the Skin, R. Marks, P. A. Payne, eds. MTP Press, Lancaster, UK, (1981), pp. 88–92.

E. W. Swokowski, Calculus with Analytic Geometry, 2nd ed. (Prindle, Weber and Schmidt, Boston, Mass., 1979).

A. Weeks, Fundamentals of Electronic Image Processing (IEEE, New York, 1996), Chaps. 3 and 6.

T. Asakura, Speckle Metrology (Academic, New York, 1978), Chap. 8.

H. Gray, L. H. Bannister, M. M. Berry, P. L. Williams, eds., Gray’s Anatomy (Churchill Livingstone, London, 1995), pp. 376–381.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Geometry of the effective angle of incidence ϕ i and the detection angle Δϕ x . All light rays reflected from the surface within the detection angle contribute to the detected light in the specular reflection direction. The material is stretched parallel to the plane of incidence. (b) Geometry of the local angle of incidence θ i for two different locations on the undulating surface topology. For regions of the surface for which the vector normal to the surface dS is oriented close to the direction, the reflected light is within the detection angle Δϕ x .

Fig. 2
Fig. 2

Illustration of light reflection from a surface. The point on the right illustrates light reflected from a point of zero slope. At this point, the local angle of incidence is the same as the effective angle of incidence ϕ i . Light reflected within an angle of Δϕ x of the specular reflection direction is detected. The point on the left illustrates the relation between the normal to the surface and the z direction.

Fig. 3
Fig. 3

Illustration of the change in local angle of incidence with stretch: (a) before stretch, (b) after stretch.

Fig. 4
Fig. 4

For this numerical solution, M = 400, the illuminated spot size is 1 mm by 1 mm and Ag ∼ 2. The specularly reflected power is calculated for 0° incidence with a solid angle of 0.0054 Sr. The numerical solution is well represented by a linear fit for the first 20% strain. The solid line is a linear fit to the data. The inset is a plot of Ag versus g for a fixed L = 436 μm in Eq. (12). Over a wide range, Ag is proportional to g suggesting that the Ag ≫ 1 limit of Eq. (13) is valid over a wide range of Ag values.

Fig. 5
Fig. 5

Diagram of the integrating sphere measurement to determine the scattering and absorption coefficients of a sample as a function of strain.

Fig. 6
Fig. 6

Reflectivity gradient as a function of incident angle for (a) parallel and (b) perpendicular polarization. The crosses and triangles represent experimental measurements and numerical solutions to Eq. (5), respectively. The solid curves are the Fresnel reflection coefficient multiplied by a scaling factor. The parameters for the numerical simulation are M = 400, a detection angle of 0.0054 sr, and Ag ∼ 2.

Fig. 7
Fig. 7

Measured diffuse reflectance obtained with the integrating sphere technique. The solid line is a linear regression fit to the data. The unstretched length is 52.8 mm.

Fig. 8
Fig. 8

Plot of experimentally measured scattering versus strain. The solid line is a linear fit to the data.

Fig. 9
Fig. 9

Plot of experimentally measured absorption versus strain. The solid line is a linear fit to the data.

Fig. 10
Fig. 10

For the same properties as Fig. 6, the calculated attenuation [from an equation similar to Eq. (5)] that is due to scattering (diamonds) decreases with strain, whereas the collimated transmitted power (squares) increases with strain. The solid lines are linear fits. If the scattering coefficient is written as a linear function of strain μ s = μ0 (1 + μ s 1 ε/μ0), the best-fit parameters to the detected collimated power show that μ s1 s0 ≪ 1. In this case, exp(-μ s d) is approximately linear for small values of strain (<20%).

Fig. 11
Fig. 11

Slope (diamonds) and linear correlation coefficient (squares) for data acquired with a CCD. The corresponding linear correlation coefficient obtained when the spot size of the laser beam was varied (triangle) is consistent with results obtained with the CCD. The significant drop in the correlation coefficient for the ∼200-μm spot size suggests that this value is approximately the lateral spatial resolution needed to measure the strain of soft material with a coherent He-Ne laser source.

Fig. 12
Fig. 12

LED source showing the results of reflectivity slope and linear correlation coefficient versus spot size by use of CCD detection.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

z=A singx,
Pϕi=-I0kˆ · dSrθi,
dS=z-fx, y|z-fx, y| dS,
Gx, y, zdS=Gx, y, fx, y×|z-fx, y|dxdy,
Pϕi=-I0 kˆ · z-fx, yrθidxdy.
|Ag cosgx|1+A2g2 cos2gx1/2sin Δϕx.
Pϕi=I0 cos ϕirϕidxdy,
dPϕids=-I0kˆ · z-fx, ys rϕi+I0kˆ · z-fx, yrθisdxdy,
rθis=rθicosθicos θis, cos θis=cos θi+s+cos θi-s.
cosθi=cos ϕi+Ag cosgxsin ϕi1+A2g2 cos2gx1/2
cosθis=AgscosXsin ϕi.
Pϕi=-rϕiI0kˆ · z-fx, ydxdy=rϕiI0cos ϕi-sin ϕixˆ · fx, ydxdy.
Pϕi=P0rϕiΔϕxLx4NAg2,
Pϕi=P0rϕiΔϕxAg2π.
L=|z-fx, y|dx=1+A2g2 cos2gx1/2dx,
L=Mg02π1+A2g2 cos2ϑ1/2dϑ=Mg1+A2g21/2 E2π|α,
Pϕi=P0rϕiΔϕx4sMπ2L,
1P0dPϕidε=s0P0dPϕids=rϕiΔϕxπ2L 4l0.
P=P0 exp-μa+μsd,
fx=iAi singix+iBi cosgix,
dx=jΔxj,
dx=jΔxj=Δxeffjwj,
|zˆ×f|1+|f|21/2sin Δϕx.
fxfxj+122fxjx2x-xj2.
2fxjx2x-xj=iAgi2sin gixj+Bigi2 cos gixj×x-xjΔϕx.
iAgi2 sin gixj+Bigi2 cos gixjx-xj=Δxeff Aeff geff2Δϕx.

Metrics