Abstract

We demonstrate the use of a phase-only liquid-crystal spatial light modulator (SLM) for polarization-controlled rotation and alignment of an array of optically trapped birefringent particles. A collimated beam incident upon a two-dimensional lenslet array yields multiple foci, scaled to produce optical gradient traps with efficient three-dimensional trapping potentials. The state of polarization of each trapping beam is encoded by the SLM, which acts as a matrix of wave plates with computer-controlled phase retardations. Control of the rotation frequency and alignment direction of the particles is achieved by the transfer of tunable photon spin angular momentum.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [CrossRef]
  3. D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
    [CrossRef]
  4. E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
    [CrossRef]
  5. M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
    [CrossRef] [PubMed]
  6. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [CrossRef] [PubMed]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
    [CrossRef]
  8. A. T. O’Neil, M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
    [CrossRef]
  9. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
    [CrossRef]
  10. S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
    [CrossRef]
  11. R. L. Eriksen, P. C. Mogensen, J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun. 187, 325–336 (2001).
    [CrossRef]
  12. Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).
  13. E. R. Dufresne, D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
    [CrossRef]
  14. R. L. Eriksen, V. R. Daria, J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  15. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002), http://www.opticsexpress.com .
    [CrossRef] [PubMed]
  16. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
    [CrossRef] [PubMed]
  17. Y. Ogura, K. Kagawa, J. Tanida, “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,” Appl. Opt. 40, 5430–5435 (2001).
    [CrossRef]
  18. R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
    [CrossRef]
  19. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, J. Glückstad, “Shack-Hartmann multiple beam optical tweezers,” Opt. Express 11, 208–214 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  20. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef] [PubMed]
  21. Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
    [CrossRef]

2003 (1)

2002 (6)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

A. T. O’Neil, M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
[CrossRef]

R. L. Eriksen, V. R. Daria, J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, J. Glückstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10, 1550–1556 (2002), http://www.opticsexpress.com .
[CrossRef] [PubMed]

2001 (6)

Y. Ogura, K. Kagawa, J. Tanida, “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,” Appl. Opt. 40, 5430–5435 (2001).
[CrossRef]

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

R. L. Eriksen, P. C. Mogensen, J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun. 187, 325–336 (2001).
[CrossRef]

1998 (3)

E. R. Dufresne, D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[CrossRef]

1997 (1)

1995 (1)

M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

1986 (1)

Akerboom, F.

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Allen, L.

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Ashkin, A.

Bayoudh, S.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

Birkbeck, A.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Birkl, G.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Buchkremer, F. B. J.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Chu, S.

Conroy, R. S.

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Critchley, C.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

Daria, V. R.

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Dumke, R.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Dziedic, J. M.

Eriksen, R. L.

Ertmer, W.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Esener, S.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Flynn, R.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Friese, M.

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[CrossRef]

M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Fukuchi, N.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Glückstad, J.

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Grier, D. G.

E. R. Dufresne, D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Gross, M.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Hara, T.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).

Heckenberg, N.

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

Heckenberg, N. R.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[CrossRef]

M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Higurashi, E.

E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[CrossRef]

Igasaki, Y.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[CrossRef]

Kagawa, K.

Kobayashi, Y.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Mehta, M.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

Mogensen, P. C.

R. L. Eriksen, P. C. Mogensen, J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun. 187, 325–336 (2001).
[CrossRef]

Moothoo, D. N.

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Müther, T.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Mutoh, K.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).

Nieminen, T.

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

Nieminen, T. A.

O’Neil, A. T.

Ogura, Y.

Ozkan, M.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Padgett, M. J.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Rodrigo, P. J.

Rubinsztein-Dunlop, H.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[CrossRef]

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Sawada, R.

E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[CrossRef]

Shao, B.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Simpson, N. B.

Sumi, S.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).

Suzuki, S.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).

Tanida, J.

Toyoda, H.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Voit, A.

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Volk, M.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Wang, M.

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Wu, M. H.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Yoshida, N.

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Am. J. Phys. (1)

D. N. Moothoo, J. Arlt, R. S. Conroy, F. Akerboom, A. Voit, K. Dholakia, “Beth’s experiment using optical tweezers,” Am. J. Phys. 69, 271–276 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

J. Micromech. Microeng. (1)

E. Higurashi, R. Sawada, T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[CrossRef]

J. Microsc. (Oxford) (1)

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, C. Critchley, “Micromanipulation of chloroplasts using optical tweezers,” J. Microsc. (Oxford) 203, 214–222 (2001).
[CrossRef]

Nature (1)

M. Friese, T. Nieminen, N. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[CrossRef]

Opt. Commun. (1)

R. L. Eriksen, P. C. Mogensen, J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun. 187, 325–336 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne, D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Sens. Actuators B (1)

R. Flynn, A. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. Wang, S. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,” Sens. Actuators B 87, 239–243 (2002).
[CrossRef]

Other (2)

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, “Optical manipulation of microparticles using diffractive optical elements,” in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 229–230 (1996).

Y. Kobayashi, Y. Igasaki, N. Yoshida, N. Fukuchi, H. Toyoda, T. Hara, M. H. Wu, “Compact high-efficiency electrically-addressable phase-only spatial light modulator,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds. Proc. SPIE3951, 158–165 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The beam from a laser diode is incident upon an SLM that acts as a programmable polarization encoder. The SOP across the transverse plane of the beam is controlled from a computer. The encoded light is projected onto a lenslet array, and the focal spots are imaged by a lens and a high-N.A. microscope objective to form separate optical gradient traps with individually adjustable SOPs.

Fig. 2
Fig. 2

Image showing the simultaneous three-dimensional optical trapping of four 5-μm-diameter polystyrene beads in a lenslet-generated tweezers array. The scale bar at the bottom of the image indicates a distance of 50 μm.

Fig. 3
Fig. 3

Image sequence showing the controlled rotation and alignment of a laser-trapped calcite fragment in elliptically polarized light controlled with an SLM. (a)–(c) Counterclockwise particle rotation in left-handed polarized light. (d), (e) Controlled particle alignment in horizontally and vertically polarized light, respectively. (f), (h) Clockwise particle rotation in right-handed circularly polarized light. The SOP is shown at the bottom of each frame. The scale bar in the first image frame indicates a distance of 5 μm, and the time lapse between successive frames is 0.6 s in (a)–(c) and (f)–(h) and 1.8 in (d)–(e).

Fig. 4
Fig. 4

Image sequence showing the simultaneous three-dimensional trapping and rotation of two calcite fragments in circularly polarized light with opposite handedness. The crystals rotate in opposite directions, as indicated by the curved arrows. The arrows at the bottom of each frame indicate the orientation of the calcite crystals. A scale bar indicating a distance of 25 μm appears in the first image frame, and the time lapse between frames is 1.04 s.

Metrics