Abstract

Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
    [Crossref]
  2. M. J. Griffin, “Bolometers for far-infrared and submillimetre astronomy,” Nucl. Instrum. Methods Phys. Res. A 444, 397–403 (2000).
    [Crossref]
  3. C. Lee, P. A. R. Ade, C. V. Haynes, “Self supporting filters for compact focal plane designs,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 81–83.
  4. J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).
  5. N. Mandolesi, M. Villa, “FIRST/Planck mission,” in V. Piuri, M. Savino, eds., ICMT/99: Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), Vol. 2, pp. 975–980.
  6. M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
    [Crossref]
  7. E. E. Haller, “Advanced far-infrared detectors,” Infrared Phys. Technol. 35, 127–146 (1994).
    [Crossref]
  8. E. E. Haller, K. M. Itoh, J. W. Beeman, “Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 115–118.
  9. A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
    [Crossref]
  10. R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
    [Crossref]
  11. A. L. Efros, B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C 8, L49–L51 (1975).
    [Crossref]

2002 (2)

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
[Crossref]

2000 (2)

M. J. Griffin, “Bolometers for far-infrared and submillimetre astronomy,” Nucl. Instrum. Methods Phys. Res. A 444, 397–403 (2000).
[Crossref]

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

1994 (2)

E. E. Haller, “Advanced far-infrared detectors,” Infrared Phys. Technol. 35, 127–146 (1994).
[Crossref]

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

1975 (1)

A. L. Efros, B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C 8, L49–L51 (1975).
[Crossref]

Ade, P. A. R.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

C. Lee, P. A. R. Ade, C. V. Haynes, “Self supporting filters for compact focal plane designs,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 81–83.

Beeman, J.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Beeman, J. W.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

E. E. Haller, K. M. Itoh, J. W. Beeman, “Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 115–118.

Benoît, A.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Bhatia, R.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Bock, J.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Bock, J. J.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Bouchet, F.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Bradshaw, T.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Charra, J.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Church, S.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Couchot, F.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

de Bernardis, P.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Delabrouille, J.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Efros, A. L.

A. L. Efros, B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C 8, L49–L51 (1975).
[Crossref]

Efstathiou, G.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Gannaway, F.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Giard, M.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Giraud-Héraud, Y.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Gispert, R.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Griffin, M.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Griffin, M. J.

R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
[Crossref]

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

M. J. Griffin, “Bolometers for far-infrared and submillimetre astronomy,” Nucl. Instrum. Methods Phys. Res. A 444, 397–403 (2000).
[Crossref]

Haller, E. E.

E. E. Haller, “Advanced far-infrared detectors,” Infrared Phys. Technol. 35, 127–146 (1994).
[Crossref]

E. E. Haller, K. M. Itoh, J. W. Beeman, “Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 115–118.

Haynes, C. V.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

C. Lee, P. A. R. Ade, C. V. Haynes, “Self supporting filters for compact focal plane designs,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 81–83.

Holmes, W.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Husted, L.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Itoh, K. M.

E. E. Haller, K. M. Itoh, J. W. Beeman, “Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 115–118.

Koch, T.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Lamarre, J. M.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Lange, A.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Lee, C.

C. Lee, P. A. R. Ade, C. V. Haynes, “Self supporting filters for compact focal plane designs,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 81–83.

Maffei, B.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Mandolesi, N.

N. Mandolesi, M. Villa, “FIRST/Planck mission,” in V. Piuri, M. Savino, eds., ICMT/99: Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), Vol. 2, pp. 975–980.

Mulder, J.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Murphy, A.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Pajot, F.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Puget, J. L.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Richards, P. L.

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

Ristorcelli, I.

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Sethuraman, S.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Shklovskii, B. I.

A. L. Efros, B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C 8, L49–L51 (1975).
[Crossref]

Sudiwala, R. V.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
[Crossref]

Tucker, C. E.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Turner, A.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Turner, A. D.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Villa, M.

N. Mandolesi, M. Villa, “FIRST/Planck mission,” in V. Piuri, M. Savino, eds., ICMT/99: Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), Vol. 2, pp. 975–980.

Wakui, E.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

Wild, L.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Woodcraft, A. L.

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
[Crossref]

Yun, M.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

Astro. Lett. Commun. (1)

J. M. Lamarre, P. A. R. Ade, A. Benoît, P. de Bernardis, J. Bock, F. Bouchet, T. Bradshaw, J. Charra, S. Church, F. Couchot, J. Delabrouille, G. Efstathiou, M. Giard, Y. Giraud-Héraud, R. Gispert, M. Griffin, A. Lange, A. Murphy, F. Pajot, J. L. Puget, I. Ristorcelli, “The high frequency instrument of Planck: design and performances,” Astro. Lett. Commun. 37, 161–170 (2000).

Infrared Phys. Technol. (1)

E. E. Haller, “Advanced far-infrared detectors,” Infrared Phys. Technol. 35, 127–146 (1994).
[Crossref]

Int. J. Infrared Millim. Waves (2)

A. L. Woodcraft, R. V. Sudiwala, M. J. Griffin, E. Wakui, B. Maffei, C. E. Tucker, C. V. Haynes, F. Gannaway, P. A. R. Ade, J. J. Bock, A. D. Turner, S. Sethuraman, J. W. Beeman, “High precision characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 575–595 (2002).
[Crossref]

R. V. Sudiwala, M. J. Griffin, A. L. Woodcraft, “Thermal modelling and characterisation of semiconductor bolometers,” Int. J. Infrared Millim. Waves 23, 545–573 (2002).
[Crossref]

J. Appl. Phys. (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[Crossref]

J. Phys. C (1)

A. L. Efros, B. I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems,” J. Phys. C 8, L49–L51 (1975).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

M. J. Griffin, “Bolometers for far-infrared and submillimetre astronomy,” Nucl. Instrum. Methods Phys. Res. A 444, 397–403 (2000).
[Crossref]

Other (4)

C. Lee, P. A. R. Ade, C. V. Haynes, “Self supporting filters for compact focal plane designs,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 81–83.

N. Mandolesi, M. Villa, “FIRST/Planck mission,” in V. Piuri, M. Savino, eds., ICMT/99: Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), Vol. 2, pp. 975–980.

M. Yun, J. Beeman, R. Bhatia, J. Bock, W. Holmes, L. Husted, T. Koch, J. Mulder, A. Lange, A. Turner, L. Wild, “Bolometric detectors for the Planck Surveyor,” in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips, J. Zmuidzinas, eds., SPIE4855, 136–147 (2002).
[Crossref]

E. E. Haller, K. M. Itoh, J. W. Beeman, “Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications,” in Proceedings of the 30th ESLAB Symposium: Submillimetre and Far-Infrared Space Instrumentation (European Space Agency, Noordwijk, The Netherlands, 1996), SP. 388, pp. 115–118.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the bolometer construction.

Fig. 2
Fig. 2

Schematic of the simple bolometer model (the ideal bolometer).

Fig. 3
Fig. 3

Bolometer responsivity as a function of optical radiation modulation frequency for a heat-sink temperature of 100 mK and various bias currents. The curves show fits to the data for each bias current, assuming a single time constant. Note that the responsivity peaks as a function of bias9 whereas the time constant decreases monotonically. Therefore, for a given responsivity, there are two time constants corresponding to bias values above and below the value at which the responsivity peaks. The y axis is plotted with arbitrary units.

Fig. 4
Fig. 4

Uncircled points show time constants obtained from measuring the response to modulated optical radiation as a function of bias current and heat-sink temperature. The temperatures are 100 mK (○), 110 mK (+), 120 mK (■), 150 mK (●) and 220 mK (*). Circled points show the time constant from gamma photon absorption events, in the limit of zero energy pulses, with temperature represented by the same symbols.

Fig. 5
Fig. 5

Pulses in bolometer voltage following absorption of a gamma-ray photon (dotted curves). Solid curves show simple exponential fits to the data. Dashed curves show an exponential decay in which the time constant of the exponential fits in the limit of zero pulse energy is used; the dashed curves therefore have the same time constant for a given bias and temperature. Where two pulses are shown in a single graph, the upper pulse is offset vertically and horizontally. Note the different y-axis scales; the scale bars at the left of each graph show the same temperature range for adjacent graphs.

Fig. 6
Fig. 6

Time constant of voltage pulses as a function of the pulse peak amplitude for various heat-sink temperatures and bias currents. The combinations of temperature and bias, respectively, are 100 mK, 1.1 nA (●), 100 mK, 3.6 nA (○), 110 mK, 0.5 nA (×), 110 mK, 1.5 nA (+), 120 mK (□), 2.4 nA, 120 mK, 0.6 nA (■). The solid curves are linear fits to each set of data. The apparent grouping of the time constants into two sets reflects a similar grouping of the chosen bias values.

Fig. 7
Fig. 7

Pulses at various heat-sink temperatures and bolometer bias currents. The difference between the absorber temperature and its equilibrium temperature is plotted. Dotted curves show the measured data, and the solid curves show the results from the simple (single heat capacity) model. Note that these are not fits to the pulses, but thermal simulation curves based on only one adjustable parameter—the chosen initial temperature, taken from the measured data (although as described in the text, the model equilibrium temperature is effectively constrained to agree with the data). Where two pulses are shown in a single graph, the upper pulse is offset vertically and horizontally. Note the large variation in y-axis scales; the scale bars at the left of each graph show the same temperature range for adjacent graphs.

Fig. 8
Fig. 8

Calculated absorbed energy from each event as a function of absorber equilibrium temperature. The symbols are the same as in Fig. 4.

Fig. 9
Fig. 9

Comparison of the absorber temperature variation for two low-energy pulses with the low-temperature section of two high-energy pulses (dotted curves). The high-energy pulses are offset along the x-axis for better comparison with the low-energy pulses. The solid curves show fits to the data with a two heat capacity model (see text). The inset shows the same information, with an expanded y axis to show the full height of the high-energy pulse. For comparison, the fits (solid curves) are limited to the temperature region shown in the main graph. The measurements were taken at a bias of 0.5 nA and a heat-sink temperature of 110 mK.

Fig. 10
Fig. 10

Schematic of the extended (two heat capacity) bolometer model.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Pulse Modeling Along with the Values Useda

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G=GS0Tβ
RT=R0 expTgT,
C=C0Tβc,
Pelec=VbiasRL+R2 R,
Plink=GS0β+1Tβ+1-T0β+1
ΔT=Pelec+Q-PlinkC0TβcΔt.
E=T0TiCTdT=C0βc+1Tiβc+1-T0βc+1,

Metrics