Abstract

Continuous, broad, and single-mode wavelength tuning of thermoelectrically cooled short-pulse quantum-cascade lasers is demonstrated with a combination of coarse grating tuning and fine phase tuning of the gain element. This approach overcomes the problem of a poor facet antireflection coating of the gain chip by shifting a Fabry-Perot longitudinal mode to coincide with the desired grating-selected wavelength. The 9-µm laser was tested with NH3 gas absorption and showed fine frequency tuning at a rate of 31 MHz/step and a time-averaged linewidth of 500–750 MHz. The total tuning range was 9.08–9.36 µm and was limited only by the intrinsic gain of the device.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Norwood, Mass., 1998).
  2. H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
    [CrossRef]
  3. H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).
  4. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
    [CrossRef]
  5. G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
    [CrossRef]
  6. M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.
  7. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  8. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [CrossRef]
  9. For additional information see, e.g., J. Faist, “External cavity quantum cascade lasers,” http://www.unine.ch/phys/meso/ec/ec.html .
  10. R. F. Curl, F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. Sect. C 98, 217–270 (2002).
    [CrossRef]
  11. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
    [CrossRef]
  12. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
    [CrossRef]
  13. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  14. S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

2002

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

R. F. Curl, F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. Sect. C 98, 217–270 (2002).
[CrossRef]

2001

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

2000

1997

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

1996

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Allen, Th.

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

Amann, M.-C.

See, e.g., M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Norwood, Mass., 1998).

Baer, D. S.

Baillargeon, J. N.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Beck, M.

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

Buus, J.

See, e.g., M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Norwood, Mass., 1998).

Capasso, F.

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Cho, A. Y.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Chou, S. I.

Cook, C. C.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Curl, R. F.

Faist, J.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

Gini, E.

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

Gmachl, C.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Hanson, R. K.

Harb, C. C.

Hartman, J. S.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Hofstetter, D.

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

Hutchinson, A. L.

Hwang, W.-Y.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Ishaug, B.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Kelly, J. F.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Kosterev, A. A.

Le, H. Q.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Lee, H.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Lin, C.-H.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Luo, G.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Manfra, M. J.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Nagali, V.

Ochoa, J. R.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Paldus, B. A.

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Pei, S.-S.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Peng, C.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Segall, J.

Sharpe, S. W.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Spence, T. G.

Tittel, F. K.

Turner, G. W.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Um, J.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Williams, R.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Zare, R. N.

Zhang, Y. H.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

Zhang, Y.-H.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

Zheng, J.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Annu. Rep. Prog. Chem. Sect. C

R. F. Curl, F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. Sect. C 98, 217–270 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

IEEE J. Quantum Electron.

G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Opt. Lett.

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Other

See, e.g., M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Norwood, Mass., 1998).

For additional information see, e.g., J. Faist, “External cavity quantum cascade lasers,” http://www.unine.ch/phys/meso/ec/ec.html .

M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.

H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).

S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Diagram of the external-cavity with a Littman-Metcalf configuration. (b) Photograph of the laser package.

Fig. 2
Fig. 2

Calculated cavity mode loss versus optical frequency. (a) When the grating-selected frequency is not in resonance with the FP mode, the grating modes have higher mode loss than the FP mode. (b) When the grating-selected frequency is in resonance with the FP mode, the mode losses are lower than both types of mode in (a).

Fig. 3
Fig. 3

(a)–(d) FP device is tuned such that the FP modes are in resonance with the grating-selected wavelength. The dashed curves represent the cavity mode loss envelope and the vertical solid lines represent the longitudinal modes (not all are shown). (a) Mode structure for an off-resonance case. (b)–(d) Phase tuning that shifts the FP mode toward the grating-selected wavelength to produce modes with the lowest cavity loss.

Fig. 4
Fig. 4

(a) Coarse grating-tuned spectra. (b) Combined grating and fine phase-tuned spectra between FP modes.

Fig. 5
Fig. 5

(a) Laser NH3 absorption around 9.294 µm at different pressures: 1 Torr (Pressure 1) and 10 Torr (Pressure 2). The solid curves represent the measurements and the dashed curves represent the HITRANPC calculation. (b) From left to right: laser NH3 absorption at 9.2934, 9.2027, and 9.1187 µm, respectively. The solid curves represent the measurements and the dashed curves represent the HITRANPC calculation.

Fig. 6
Fig. 6

Absorption of the transmitted laser beam through a 15-cm-long gas cell. The squares represent the expected peak absorption value that was obtained with the HITRANPC calculation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

expg-αlexp2ilβν=1r1rˆν,
gthresγ=α+1lln1r1rˆν,
2lβν+ϕˆν=2mπ,

Metrics