Abstract

Applicability of a commercial twisted-nematic liquid-crystal display is examined at ∼400 nm. Different modulation modes predicted by Jones-matrix calculus are experimentally tested. High contrast amplitude modulation with negligible loss, high contrast and low loss hybrid ternary modulation, and 1.5π continuous phase delay without intensity modulation and with low loss are presented. Simulation results of a 4f holographic system prove the usefulness of the high contrast for amplitude modulation, and the importance of π phase difference between high transmission white levels in a hybrid ternary modulation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
    [CrossRef]
  2. G. J. Steckman, A. Pu, D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394 (2001).
    [CrossRef]
  3. P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).
  4. J.-S. Jang, D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797–1799 (2001).
    [CrossRef]
  5. C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
    [CrossRef]
  6. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  7. M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
    [CrossRef]
  8. Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
    [CrossRef]
  9. J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
    [CrossRef]
  10. J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).
  11. P. D. Gianino, Ch. L. Woods, J. L. Horner, “Analysis of spatial light modulator contrast ratios and optical correlation,” Appl. Opt. 34, 6682–6694 (1995).
    [CrossRef] [PubMed]
  12. M.-P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
    [CrossRef]
  13. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
    [CrossRef]
  14. J. Nicolás, J. Campos, M. J. Yzuel, “Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices,” J. Opt. Soc. Am. A 19, 1013–1020 (2002).
    [CrossRef]
  15. A. Márquez, C. Iemmi, J. Campos, S. Ledesma, J. A. Davis, M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316–2322 (2001).
    [CrossRef]

2002 (1)

2001 (3)

2000 (1)

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

1998 (1)

1996 (1)

J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
[CrossRef]

1995 (2)

1994 (2)

Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Bashaw, M. C.

Bernal, M.-P.

Burr, G. W.

Campos, J.

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Davis, J. A.

A. Márquez, C. Iemmi, J. Campos, S. Ledesma, J. A. Davis, M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316–2322 (2001).
[CrossRef]

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

Domján, L.

J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).

Erbach, P. S.

J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
[CrossRef]

Franich, D. J.

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

Gianino, P. D.

Gregory, D. A.

J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
[CrossRef]

Heanue, J. F.

Hesselink, L.

Horner, J. L.

Iemmi, C.

Jang, J.-S.

Koppa, P.

J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

Ledesma, S.

Lorincz, E.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).

Lu, G.

Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[CrossRef]

Lu, K.

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Márquez, A.

A. Márquez, C. Iemmi, J. Campos, S. Ledesma, J. A. Davis, M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316–2322 (2001).
[CrossRef]

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

McClain, J. L.

J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
[CrossRef]

Nicolás, J.

Psaltis, D.

Pu, A.

Quintanilla, M.

Reményi, J.

J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).

Richter, P.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Shin, D.-H.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

Soutar, C.

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Steckman, G. J.

Szarvas, G.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Várhegyi, P.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

Woods, Ch. L.

Yamauchi, M.

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

Yu, F. T. S.

Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[CrossRef]

Yzuel, M. J.

Zhang, Z.

Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

M. Yamauchi, A. Márquez, J. A. Davis, D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Commun. 181, 1–6 (2000).
[CrossRef]

Opt. Eng. (3)

Z. Zhang, G. Lu, F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018–3022 (1994).
[CrossRef]

J. L. McClain, P. S. Erbach, D. A. Gregory, “Spatial light modulator phase depth determination from optical diffraction information,” Opt. Eng. 35, 951–954 (1996).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Opt. Lett. (1)

Other (4)

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, P. Richter, “Optimization of the storage density in thin polarization holograms,” in Holography 2000, 10–14 July 2000, St. Pölten, Austria, Tung H. Jeong, Werner K. Sobotka, eds., Proc. of SPIE4149, (2000).

J. Reményi, P. Koppa, L. Domján, E. Lorincz, “Phase modulation configuration of a liquid crystal display,” in ICO XIX: Optics for the Quality of Life, A. Consortini, G. C. Righini, eds.Proc. SPIE4829, 793–794 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme showing the orientation of the polarizing elements with the angles used in the model. LP1 and LP2 are linear polarizers, QWP1 and QWP2 are quarter-wave plates.

Fig. 2
Fig. 2

Optical arrangement for experimental test of the TN LCD. LP1 and LP2 are linear polarizers, QWP1 and QWP2 are quarter-wave plates, D, is the detector.

Fig. 3
Fig. 3

(a) Striped image set on the LCD at phase measurement, (b) Fourier transform of the LCD.

Fig. 4
Fig. 4

Amplitude modulating operation of a TN LCD: (a) Calculated transmission and phase delay (in units of π) versus the birefringence, (b) measured transmission and phase at different gray levels.

Fig. 5
Fig. 5

Typical 4f holographic memory system used in the simulations.

Fig. 6
Fig. 6

Effect of the LCD contrast to the raw BER in the 4f holographic system (Fig. 5).

Fig. 7
Fig. 7

Homogeneity-characterization of the Fourier plane versus the phase difference (in units of π) between the two white levels.

Fig. 8
Fig. 8

Central part of the Fourier plane of a random ternary data image with: (a) π phase difference, (b) 0.8 π phase difference between the two white states. (Images are displayed with 255 gray levels.)

Fig. 9
Fig. 9

Hybrid ternary modulation of a TN LCD: (a) Calculated transmission and phase delay (in units of π) versus the birefringence, (b) measured transmission and phase delay at gray levels.

Fig. 10
Fig. 10

Phase modulating operation of a TN LCD: (a) Calculated transmission and phase delay (in units of π) versus the birefringence, (b) measured transmission and phase delay at gray levels.

Tables (1)

Tables Icon

Table 1 Angles of the Polarization Elements of the System of Fig. 1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

MLCSLM=exp-iβR-αMα, β,
Rθ=cos θsin θ-sin θcos θ,
Mα, β=cos γ-iβγsin γαγsin γ-αγsin γcos γ+iβγsin γ.
Eout=PoutψoutMLCSLMα, βEinψin,
Ein=cos ψinsin ψin
Pout=cos2 ψoutsin ψout cos ψoutsin ψout cos ψoutsin2 ψout
Eout=PoutψoutR-φoutQRφoutMLCSLMα, β×R-φinQRφinEinψin,
Q=expi π4·100i

Metrics