Abstract

Mammograms of 35 patients suspected of breast cancer were taken along craniocaudal and mediolateral projections with a dual-wavelength scanning laser pulse mammograph measuring time-resolved transmittance. Among 26 tumors known from routine clinical diagnostics, 17 tumors were detected retrospectively in optical mammograms. Effective tumor optical properties derived from a homogeneous model were used to deduce physiological information. All tumors exhibited increased total hemoglobin concentration and decreased or unchanged blood oxygen saturation compared with surrounding healthy tissue. Scatter plots based on a pixelwise analysis of individual mammograms were introduced and applied to represent correlations between characteristic quantities derived from measured distributions of times of flight of photons.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef]
  2. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
    [PubMed]
  3. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
    [CrossRef] [PubMed]
  4. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  6. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).
  7. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
    [CrossRef] [PubMed]
  8. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  9. R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.
  10. H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.
  11. S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
    [CrossRef]
  12. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  13. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  14. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef]
  15. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
    [CrossRef]
  16. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
    [CrossRef]
  17. D. J. Hall, J. C. Hebden, D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt. 36, 7270–7276 (1997).
    [CrossRef]
  18. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  19. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  20. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  21. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
    [CrossRef] [PubMed]
  22. H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1218 (1986).
    [CrossRef] [PubMed]
  23. M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. thesis (University College, London, 1991).
  24. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  25. S. Thomsen, D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” in Advances in Optical Biopsy and Optical Mammography, Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
    [CrossRef]
  26. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  27. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef] [PubMed]
  28. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
    [CrossRef] [PubMed]
  29. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  30. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  31. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  32. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  33. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  34. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  35. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
    [CrossRef] [PubMed]

2002 (4)

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

2001 (4)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

2000 (3)

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

1999 (2)

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

1998 (6)

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

S. Thomsen, D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” in Advances in Optical Biopsy and Optical Mammography, Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

1997 (4)

1996 (3)

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

1994 (2)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

1990 (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

1989 (1)

1986 (1)

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1218 (1986).
[CrossRef] [PubMed]

1973 (1)

‘t Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Arridge, S. R.

Barbour, R. L.

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bigio, I. J.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Boyer, J.

Butler, J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Cerussi, A. E.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chernomordik, V.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Contini, D.

Cope, M.

M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. thesis (University College, London, 1991).

Cubeddu, R.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

Danesini, G. M.

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Dehghani, H.

Delpy, D. T.

Durduran, T.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Fantini, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Feng, T.-C.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Franceschini, M. A.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Fuselier, T.

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gandjbakhche, A.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Giambattistelli, E.

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Götz, L.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

Graber, H. L.

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Grosenick, D.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

Hale, G. M.

Hall, D. J.

Haskell, R. C.

Hattery, D. W.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Heywang-Köbrunner, S. H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

Hillman, E. M.

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Hsiang, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Jess, H.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jiang, S.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Johnson, T. M.

Kaneko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Kaschke, M.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Martelli, F.

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McAdams, M. S.

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Messina, F.

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Moesta, K. T.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

Mourant, J. R.

Nossal, R.

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Österberg, U. L.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Pallaro, L.

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Pei, Y.

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Pifferi, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Pogue, B. W.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Poplack, S.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Querry, M. R.

Rinneberg, H.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

Schlag, P.

Schlag, P. M.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

Schmitz, C. H.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Schütz, O.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

Schweiger, M.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Siebold, H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

Soho, S.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Svaasand, L. O.

Taroni, P.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Tatman, D.

S. Thomsen, D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” in Advances in Optical Biopsy and Optical Mammography, Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef]

Thomsen, S.

S. Thomsen, D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” in Advances in Optical Biopsy and Optical Mammography, Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef]

Torricelli, A.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

Totkas, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tsay, T.-T.

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Veenstra, H.

Wabnitz, H.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

Walker, S. A.

Wells, W. A.

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

White, D. R.

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1218 (1986).
[CrossRef] [PubMed]

Wilson, B. C.

Woodard, H. Q.

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1218 (1986).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Zaccanti, G.

Zhong, S.

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Akt. Radiol. (1)

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).

Ann. N.Y. Acad. Sci. (1)

S. Thomsen, D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” in Advances in Optical Biopsy and Optical Mammography, Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef]

Appl. Opt. (9)

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
[CrossRef] [PubMed]

D. J. Hall, J. C. Hebden, D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt. 36, 7270–7276 (1997).
[CrossRef]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

Br. J. Radiol. (1)

H. Q. Woodard, D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 1209–1218 (1986).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Colak, M. B. van der Mark, G. W. ‘t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

J. Biomed. Opt. (7)

T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. Österberg, K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998)
[CrossRef] [PubMed]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurements of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, A. Gandjbakhche, “Quantification of optical properties of a breast tumor using random walk theory,” J. Biomed. Opt. 7, 80–87 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Photochem. Photobiol. (2)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72, 383–391 (2000).
[PubMed]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (4)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Other (3)

R. Cubeddu, G. M. Danesini, E. Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, A. Torricelli, “Time-resolved optical mammograph for clinical studies beyond 900 nm,” in OSA Biomedical Topical Meetings: Technical Digest Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 674–676.

H. Rinneberg, D. Grosenick, H. Wabnitz, K. T. Moesta, P. M. Schlag, “Detection and Characterization of breast tumors by a laser-pulse mammograph,” in Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 105–110.

M. Cope, “The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. thesis (University College, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of laser-pulse scanning mammograph.

Fig. 2
Fig. 2

(a) Cross section of semi-infinite slab. (b) Idealized shape of breast, used to derive distance a(x, y) from thickness d(x, y) [see Eq. (1)]; a(x, y) is the perpendicular from the scan position (x, y) to the corresponding plane parallel to z and tangential to the breast boundary.

Fig. 3
Fig. 3

Reduced scattering coefficients μ s ′(x, y) versus thickness d(x, y) for all pixels (solid squares) of a mammogram (patient 9, left breast, mediolateral, 670 nm) and corresponding fit to leading edge of a Gaussian pulse shape (open circles).

Fig. 4
Fig. 4

Optical mammograms of patient 9 based on reciprocal normalized photon counts 1/N 8(x, y) at 670 nm. (a) Left breast, craniocaudal, with tumor centered at (x, y) = (-2 cm, 2.5 cm); (b) right breast, craniocaudal; (c) left breast, mediolateral, with tumor centered at (x, y) = (0.5 cm, -3.75 cm); (d) right breast, mediolateral.

Fig. 5
Fig. 5

(a)-(d) Optical and (e), (f) MR mammograms of patient 12. Optical mammograms display reciprocal normalized photon counts 1/N 8 (x, y) at 670 nm. (a) Left breast, craniocaudal, with tumor centered at (x, y) = (-5 cm, 0 cm); (b) right breast, craniocaudal; (c) left breast, mediolateral, with tumor centered at (x, y) = (0.25 cm, -3 cm); (d) right breast, mediolateral; (e) MR mammogram (transversal cross section), T 2-weighted spin echo sequence, tumor in left breast marked by arrows; (f) subtraction image after intravenous injection of Gd-DTPA with tumor area enhanced. Insert, signal kinetics of tumor area with typical plateau indicative of malignancy.

Fig. 6
Fig. 6

(a)-(c) Craniocaudal and (d)-(f) mediolateral optical mammograms of left breast of patient 5 based on normalized photon counts at 785 nm. (a) Late time window, 1/N 8(x, y), tumor centered at (x, y) = (-3 cm, 2.5 cm); (b) early time window, 1/N 1 (x, y); (c) N 1 (x, y), cyst centered at (x, y) = (-2.5 cm, 0 cm); (d) 1/N 8 (x, y), tumor centered at (x, y) = (3 cm, -4.5 cm); (e) 1/N 1(x, y); (f) N 1(x, y), cyst centered at (x, y) = (0.5 cm, -0.5 cm).

Fig. 7
Fig. 7

(a), (d) X-ray mammograms and (b), (c), (e), (f) optical mammograms of patient 26 based on reciprocal normalized photon counts 1/N 8(x, y) at 670 nm. The tumor is located in the right breast. (a) Right breast craniocaudal, position of tumor indicated by arrows; (b) right breast craniocaudal; (c) left breast craniocaudal; (d) right breast mediolateral, position of tumor indicated by arrows; (e) right breast mediolateral; (f) left breast mediolateral.

Fig. 8
Fig. 8

(a) Average reduced scattering coefficients (bulk values) μ s,0′ and (b) absorption coefficients μ a,0 at 785 nm versus those at 670 nm. Data refer to patients 7–35 (left and right breasts); estimated error bars to ±5% of bulk values.

Fig. 9
Fig. 9

Optical mammograms (craniocaudal) of left breast of patient 9 (compare Fig. 4). (a) Effective absorption coefficient at 670 nm; (b) effective reduced scattering coefficient at 670 nm; (c) total hemoglobin concentration c tHb; (d) blood oxygen saturation Y, derived from effective absorption coefficients.

Fig. 10
Fig. 10

(a) Effective absorption coefficients and (b) reduced scattering coefficients of tumors of selected patients normalized to bulk values. Corresponding changes in (c) total hemoglobin concentration c tHb and (d) blood oxygen saturation Y with respect to bulk values. Error bars were derived assuming a 5% uncertainty of the absorption and reduced scattering coefficients.

Fig. 11
Fig. 11

Scatter plot of blood oxygen saturation versus total hemoglobin concentration, derived from effective absorption coefficients. Data refer to patients with tumors clearly visible in optical mammograms.

Fig. 12
Fig. 12

Bulk optical properties μ s,0′ and μ a,0, effective tumor optical properties (EFF), and tumor optical properties obtained from diffraction of photon density waves (PDW) for selected cases at 785 nm. (a) Reduced scattering coefficients; (b) absorption coefficients. Error bars correspond to an uncertainty of ±5% (homogeneous model) and ±10% (PDW).

Fig. 13
Fig. 13

Optical properties of fatty tissue, glandular tissue, and mastopathies for selected patients: Reduced scattering coefficients (a) and absorption coefficients (b) at 785 nm versus those at 670 nm. Error bars correspond to a typical uncertainty of 5%.

Fig. 14
Fig. 14

Scatter plots of selected parameters taken from mammograms of patient 9 [left breast, craniocaudal; compare Fig. 4(a)]. Each data point corresponds to a particular scan position. (a) Blood oxygen saturation versus total hemoglobin concentration; (b) absorption coefficients at 785 nm versus those at 670 nm; (c) reduced scattering coefficients at 785 nm versus those at 670 nm; (d) optical mammogram, 1/N 8(x, y). Open squares correspond to the tumor area tagged in the optical mammogram.

Tables (4)

Tables Icon

Table 1 Patients with Tumor Visible in Optical Mammograms (Both Projections)

Tables Icon

Table 2 Patients with Tumor Visible in Optical Mammograms (One Projection Only)

Tables Icon

Table 3 Patients with Tumor Missed in Optical Mammograms (Both Projections)

Tables Icon

Table 4 Ensemble Averages (Patients 7–35) of Bulk Optical Properties, Bulk Physiological Parameters, Scatter Power b and Water Fraction

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ax, y=dgap1-1-d2x, ydgap21/2.
μaλi=cHbεHbλi+cHbO2εHbO2λiln 10+κH2Oμa,H2Oλi, i=1, 2.
μsλ=aλ-b,
μsλ2μsλ1=λ2λ1-b.
μaλ2=mμaλ1-κH2Oμa,H2Oλ1+κH2Oμa,H2Oλ2,
mY=YεHbO2λ2+1-YεHbλ2YεHbO2λ1+1-YεHbλ1,

Metrics