Abstract

In near-infrared spectroscopy and imaging, the sensitivity of the detected signal to brain activation and the volume of interrogated tissue are clinically important. Light propagation in adult and neonatal heads is strongly affected by the presence of a low-scattering cerebrospinal fluid layer. The effect of the heterogeneous structure of the head on light propagation in the adult brain is likely to be different from that in the neonatal brain because the thickness of the superficial tissues and the optical properties of the brain of the neonatal head are quite different from those of the adult head. In this study, light propagation in the two-dimensional realistic adult and neonatal head models, whose geometries are generated from a magnetic resonance imaging scan of the human heads, is predicted by Monte Carlo simulation. The sandwich structure, which is a low-scattering cerebrospinal fluid layer held between the high-scattering skull and gray matter, strongly affects light propagation in the brain of the adult head. The sensitivity of the absorption change in the gray matter is improved; however, the intensely sensitive region is confined to the shallow region of the gray matter. The high absorption of the neonatal brain causes a similar effect on light propagation in the head. The intensely sensitive region in the neonatal brain is confined to the gray matter; however, the spatial sensitivity profile penetrates into the deeper region of the white matter.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
    [CrossRef]
  2. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
    [CrossRef]
  3. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
    [CrossRef]
  4. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
    [CrossRef] [PubMed]
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
    [CrossRef]
  7. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [CrossRef] [PubMed]
  8. S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  9. M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
    [CrossRef] [PubMed]
  10. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
    [CrossRef]
  12. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
    [CrossRef] [PubMed]
  13. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  14. M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  15. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  16. P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” Ph.D. dissertation (University of London, London, 1992).
  17. E. Okada, D. T. Delpy, “Near infrared light propagation in an adult head model. 1. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [CrossRef] [PubMed]
  18. P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
    [CrossRef]
  19. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
    [CrossRef] [PubMed]

2003

2002

D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

1998

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

1997

1995

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

1993

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

1992

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

1988

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

1987

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

1986

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Anday, E.

Arridge, S. R.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density function. Part 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

Boas, D. A.

Chance, B.

Cooper, C. E.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Corballis, P.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Culver, J. P.

Delpy, D. T.

E. Okada, D. T. Delpy, “Near infrared light propagation in an adult head model. 1. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Dunn, A. K.

Edwards, A. D.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Elwell, C. E.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Fabiani, M.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Fantini, S.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Friedman, D.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Gratton, E.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Gratton, G.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

Hong, L.

Hoshi, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Kato, C.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Kohri, S.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Koizumi, H.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Kuge, Y.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Li, C.

Maki, A.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Matcher, S. J.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

Mayanagi, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

McCormick, D. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Murray, T.

Nioka, S.

Okada, E.

Ovetsky, Y.

Pidikiti, D.

Potter, L. A.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Reynolds, E. O. R.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Roth, S. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Schweiger, M.

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Stott, J. J.

Tamaki, N.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Tamura, M.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Thomas, R.

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” Ph.D. dissertation (University of London, London, 1992).

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Watt, J. S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

Worden, K.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Wyatt, J. S.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Zhou, S.

Adv. Exp. Med. Biol.

P. van der Zee, D. T. Delpy, “Simulation of the point spread function for light in tissue by Monte Carlo technique,” Adv. Exp. Med. Biol. 215, 179–191 (1987).
[CrossRef]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Anal. Biochem.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef]

Appl. Opt.

J. Cog. Neurosci.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cog. Neurosci. 7, 446–456 (1995).
[CrossRef]

Lancet.

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and hemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet. ii, 1063–1066 (1986).
[CrossRef]

Med. Phys.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, eds., “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Neuroimage

M. Firbank, E. Okada, D. T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses,” Neuroimage 8, 69–78 (1998).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. S. Watt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1443–1442 (1988).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Physiol. Meas.

S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23, 301–312 (2002).
[CrossRef]

Other

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, 454–465 (1993).
[CrossRef]

P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” Ph.D. dissertation (University of London, London, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Realistic (a) adult and (b) neonatal head models. The model consists of regular-prism elements that are specified by their scattering and absorption coefficients to represent the complex boundaries of the tissue.

Fig. 2
Fig. 2

DPF as a function of the source-detector spacing. (a) Adult head model, (b) neonatal head model. The experimental data are from figures reported by van der Zee et al.18

Fig. 3
Fig. 3

PDPF for the gray matter and white matter as a function of the source-detector spacing.

Fig. 4
Fig. 4

Spatial sensitivity profile in the adult head model for a source-detector of (a) 20 mm, (b) 30 mm, (c) 40 mm, (d) 50 mm.

Fig. 5
Fig. 5

The spatial sensitivity profile neonatal head model for a source-detector spacing of (a) 20 mm, (b) 30 mm, (c) 40 mm, (d) 50 mm.

Fig. 6
Fig. 6

Spatial sensitivity profile of the adult and neonatal head models with the brain whose absorption coefficient is half those shown in Table 1 for a source-detector spacing of 50 mm.

Tables (1)

Tables Icon

Table 1 Optical Properties of Tissue for Wavelength of 800 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔOD=ΔlnI0/IΔμaL,
DPF=L/d=ct/d,
ΔODΔμa brainLbrain=Δμa brainLgray matter+Lwhite matter,
PDPFgray matter=Lgray matter/d,
PDPFwhite matter=Lwhite matter/d.

Metrics