Abstract

We report optical near-field Raman imaging with subdiffraction resolution (∼120 nm) without field enhancement effects. Chemical discrimination on tetracyanoquinodimethane organic thin films showing localized salt complexes is accomplished by detailed Raman maps. Acquisition times that are much shorter than previously reported are due to the high Raman efficiency of the materials and to a careful collection and detection of the optical signals in our near-field Raman spectrometer.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
    [CrossRef]
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
    [CrossRef] [PubMed]
  4. E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418 (1873).
    [CrossRef]
  5. D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
    [CrossRef]
  6. C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
    [CrossRef]
  7. C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
    [CrossRef]
  8. E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
    [CrossRef] [PubMed]
  9. S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
    [CrossRef]
  10. S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
    [CrossRef]
  11. A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001).
    [CrossRef]
  12. D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
    [CrossRef]
  13. S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997).
    [CrossRef]
  14. D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
    [CrossRef]
  15. R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
    [CrossRef]
  16. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998).
    [CrossRef]
  17. R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
    [CrossRef]
  18. V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
    [CrossRef] [PubMed]
  19. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [CrossRef]
  20. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
    [CrossRef]
  21. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
    [CrossRef]
  22. M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001).
    [CrossRef]
  23. P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
    [CrossRef]
  24. P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).
  25. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  26. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [CrossRef]
  27. K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [CrossRef]
  28. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
    [CrossRef]
  29. W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001).
    [CrossRef]
  30. S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
    [CrossRef]
  31. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
    [CrossRef]
  32. P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001).
    [CrossRef]
  33. K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
    [CrossRef]

2002 (1)

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

2001 (5)

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001).
[CrossRef]

W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001).
[CrossRef]

P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001).
[CrossRef]

A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001).
[CrossRef]

2000 (4)

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
[CrossRef] [PubMed]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

1999 (1)

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

1998 (6)

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998).
[CrossRef]

S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
[CrossRef]

S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
[CrossRef]

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

1997 (3)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997).
[CrossRef]

1996 (3)

C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
[CrossRef]

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
[CrossRef]

1995 (3)

K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
[CrossRef]

1994 (1)

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

1992 (2)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

1984 (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418 (1873).
[CrossRef]

Allegrini, M.

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Ayad, M.

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Ayars, E. J.

E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
[CrossRef] [PubMed]

Batchelder, D. N.

S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
[CrossRef]

S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
[CrossRef]

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Blochwitz, J.

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Bruckbauer, A.

M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001).
[CrossRef]

Buratto, S. K.

K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
[CrossRef]

Chen, K.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Colocci, M.

P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001).
[CrossRef]

DeAro, J. A.

K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
[CrossRef]

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Emory, S. R.

S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997).
[CrossRef]

Evans, S. D.

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Fokas, C.

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Fritz, T.

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Futamata, M.

M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001).
[CrossRef]

Gao, W.

W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001).
[CrossRef]

Gennai, S.

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Grober, R. D.

K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Gucciardi, P. G.

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001).
[CrossRef]

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Hallen, H. D.

E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
[CrossRef] [PubMed]

C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
[CrossRef]

C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Hayazawa, N.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Hecht, B.

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Inouye, Y.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

Jahncke, C. L.

C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
[CrossRef]

C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
[CrossRef]

Kahn, A.

W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001).
[CrossRef]

Karrai, K.

K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Kawata, S.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Labardi, M.

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Lambelet, P.

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lazzeri, F.

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Leo, K.

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

Liu, S.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Liu, Y.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Marquis-Weible, F.

Moskovits, M.

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

Nie, S.

S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Othonos, A.

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

Paesler, M. A.

E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
[CrossRef] [PubMed]

C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
[CrossRef]

C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
[CrossRef]

Patanè, S.

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

Pfeffer, M.

Pfeiffer, M.

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

Philipona, C.

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Robertson, J.

A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001).
[CrossRef]

Sayah, A.

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Sick, B.

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Smith, D. A.

S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
[CrossRef]

S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
[CrossRef]

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Tian, H.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Trusso, S.

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

Tsai, D. P.

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

Uttamchandani, D.

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Vasi, C.

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

Vo-Dinh, T.

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

Webster, S.

S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
[CrossRef]

S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
[CrossRef]

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Weston, K. D.

K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
[CrossRef]

Wild, U. P.

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Wu, P.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

Zhu, D.

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Ziesel, D.

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

Anal. Chem. (2)

S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997).
[CrossRef]

V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994).
[CrossRef]

C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998).
[CrossRef]

W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001).
[CrossRef]

P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001).
[CrossRef]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418 (1873).
[CrossRef]

Chem. Phys. Lett. (4)

D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001).
[CrossRef]

M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001).
[CrossRef]

J. Appl. Phys. (1)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

J. Raman Spectrosc. (1)

C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996).
[CrossRef]

Opt. Commun. (1)

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Phys. Chem. (1)

P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).

Phys. Rev. B (1)

A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996).
[CrossRef]

P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991).
[CrossRef] [PubMed]

Thin Solid Films (1)

S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996).
[CrossRef]

Ultramicroscopy (2)

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984).
[CrossRef]

D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995).
[CrossRef]

Vib. Spectrosc. (2)

S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998).
[CrossRef]

R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the nano-Raman setup.

Fig. 2
Fig. 2

Microphoto of the tetracyanoquinodimethane (TCNQ) thin film. The dark areas are due to the strong absorption of the coppersalt (CuTCNQ) complexes.

Fig. 3
Fig. 3

(a) Elastic and (b) Raman scattering map at 1453 cm-1 acquired on a border between a TCNQ-rich area (indicated with the letters A and C) and a CuTCNQ cluster (letter B). The Raman spectra, shown in the top plot of (c), were acquired respectively at positions A (light gray curve) and C (black curve) within the TCNQ-rich area. They display the typical TCNQ peaks with different intensities superimposed to a constant background. In the spectrum acquired at position B [bottom plot of (c)] we see the shift of the 1453-cm-1 peak toward 1381 cm-1, representing the chemical fingerprint of the CuTCNQ compound.

Fig. 4
Fig. 4

(a) Topography, (b) elastic scattering, and (c) Raman map at 1453 cm-1. The arrows indicate from where the line profiles reported in (d), (e), and (f) have been extracted (the top plots refer to the left-hand side arrow, the bottom plots to the right hand side one). The patterned boxes are a guide to the eye to point out that no correlation exists between the three signals in those sites used to assess the nano-Raman spatial resolution.

Fig. 5
Fig. 5

Topography (top), Raman scattering at 1453 cm-1 (center), and elastic scattering (bottom) line profiles carried out on another bumplike structure showing a different chemical morphology with respect to that reported in Fig. 4.

Metrics