Abstract

It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature at the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  3. S. W. Kizirnis, R. J. Brecha, B. N. Ganguli, L. P. Goss, R. Gupta, “Hydroxyl (OH) distributions and temperature profiles in a premixed propane flame obtained by laser deflection techniques,” Appl. Opt. 23, 3873–3881 (1984).
    [CrossRef] [PubMed]
  4. A. Rose, R. Gupta, “Combustion diagnostics by photo-deflection spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1339–1345.
  5. R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations in Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989), Chap. 8.
  6. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
    [CrossRef]
  7. M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
    [CrossRef]
  8. Y. Li, R. Gupta, “An investigation of the photothermal deflection spectroscopy technique for temperature measurements in a flame,” Appl. Phys. B 75, 103–112 (2002).
    [CrossRef]
  9. A. Rose, R. Vyas, R. Gupta, “Pulsed photothermal deflection spectroscopy in a flowing medium: a quantitative investigation,” Appl. Opt. 25, 4626–4643 (1986).
    [CrossRef] [PubMed]
  10. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  11. T. J. McGee, T. J. McIlrath, “Absolute OH absorption cross sections (for Lidar measurements),” J. Quant. Spectrosc. Radiat. Transfer 32, 179–184 (1984).
    [CrossRef]
  12. D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
    [CrossRef]
  13. J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 3406–3410 (1983).
    [CrossRef] [PubMed]
  14. J. Luque, D. Crosley, “Transition probabilities in the A 2∑+-X2 Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
    [CrossRef]
  15. Calculation by a computer code provided by V. S. Katta of Innovative Scientific Solutions, Inc., Dayton, Ohio.
  16. Y. S. Touloukian, T. Makita, eds., Specific Heat-Nonmetallic Liquids and Gases, Vol. 6 of Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).
  17. J. D. Cox, D. D. Wagman, V. A. Medvedev, Codata Key Values for Thermodynamics (Hemisphere, New York, 1989).
  18. H. Harvey, A. P. Peskin, S. A. Klein, NIST/ASME Steam Properties Database: Version 2.2, NIST Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, Md., 2000).
  19. H. L. Anderson, ed., A Physicist’s Desk Reference (American Institute of Physics, New York, 1989).
  20. D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, Ann Arbor, Mich., 1994).

2002 (1)

Y. Li, R. Gupta, “An investigation of the photothermal deflection spectroscopy technique for temperature measurements in a flame,” Appl. Phys. B 75, 103–112 (2002).
[CrossRef]

1998 (1)

J. Luque, D. Crosley, “Transition probabilities in the A 2∑+-X2 Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

1994 (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

1990 (1)

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

1987 (1)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

1986 (1)

1985 (1)

D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
[CrossRef]

1984 (2)

1983 (1)

1962 (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Brecha, R. J.

Cox, J. D.

J. D. Cox, D. D. Wagman, V. A. Medvedev, Codata Key Values for Thermodynamics (Hemisphere, New York, 1989).

Crosley, D.

J. Luque, D. Crosley, “Transition probabilities in the A 2∑+-X2 Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Cundy, V. A.

D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Ganguli, B. N.

Garetz, B. A.

Goss, L. P.

Gupta, R.

Y. Li, R. Gupta, “An investigation of the photothermal deflection spectroscopy technique for temperature measurements in a flame,” Appl. Phys. B 75, 103–112 (2002).
[CrossRef]

A. Rose, R. Vyas, R. Gupta, “Pulsed photothermal deflection spectroscopy in a flowing medium: a quantitative investigation,” Appl. Opt. 25, 4626–4643 (1986).
[CrossRef] [PubMed]

S. W. Kizirnis, R. J. Brecha, B. N. Ganguli, L. P. Goss, R. Gupta, “Hydroxyl (OH) distributions and temperature profiles in a premixed propane flame obtained by laser deflection techniques,” Appl. Opt. 23, 3873–3881 (1984).
[CrossRef] [PubMed]

R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations in Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989), Chap. 8.

A. Rose, R. Gupta, “Combustion diagnostics by photo-deflection spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1339–1345.

Harvey, H.

H. Harvey, A. P. Peskin, S. A. Klein, NIST/ASME Steam Properties Database: Version 2.2, NIST Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, Md., 2000).

Khosrofian, J. M.

Kizirnis, S. W.

Klein, S. A.

H. Harvey, A. P. Peskin, S. A. Klein, NIST/ASME Steam Properties Database: Version 2.2, NIST Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, Md., 2000).

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Köllner, M.

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

Li, Y.

Y. Li, R. Gupta, “An investigation of the photothermal deflection spectroscopy technique for temperature measurements in a flame,” Appl. Phys. B 75, 103–112 (2002).
[CrossRef]

Luque, J.

J. Luque, D. Crosley, “Transition probabilities in the A 2∑+-X2 Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

McGee, T. J.

T. J. McGee, T. J. McIlrath, “Absolute OH absorption cross sections (for Lidar measurements),” J. Quant. Spectrosc. Radiat. Transfer 32, 179–184 (1984).
[CrossRef]

McIlrath, T. J.

T. J. McGee, T. J. McIlrath, “Absolute OH absorption cross sections (for Lidar measurements),” J. Quant. Spectrosc. Radiat. Transfer 32, 179–184 (1984).
[CrossRef]

Medvedev, V. A.

J. D. Cox, D. D. Wagman, V. A. Medvedev, Codata Key Values for Thermodynamics (Hemisphere, New York, 1989).

Monkhouse, P.

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Morse, J. S.

D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
[CrossRef]

Peskin, A. P.

H. Harvey, A. P. Peskin, S. A. Klein, NIST/ASME Steam Properties Database: Version 2.2, NIST Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, Md., 2000).

Rose, A.

A. Rose, R. Vyas, R. Gupta, “Pulsed photothermal deflection spectroscopy in a flowing medium: a quantitative investigation,” Appl. Opt. 25, 4626–4643 (1986).
[CrossRef] [PubMed]

A. Rose, R. Gupta, “Combustion diagnostics by photo-deflection spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1339–1345.

Schwarzwald, R.

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Senser, D. W.

D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
[CrossRef]

Vyas, R.

Wagman, D. D.

J. D. Cox, D. D. Wagman, V. A. Medvedev, Codata Key Values for Thermodynamics (Hemisphere, New York, 1989).

Wolfrum, J.

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. Li, R. Gupta, “An investigation of the photothermal deflection spectroscopy technique for temperature measurements in a flame,” Appl. Phys. B 75, 103–112 (2002).
[CrossRef]

Chem. Phys. Lett. (2)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A 2∑+, ν′ = 1 and ν′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

J. Chem. Phys. (1)

J. Luque, D. Crosley, “Transition probabilities in the A 2∑+-X2 Πi electronic system of OH,” J. Chem. Phys. 109, 439–448 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

T. J. McGee, T. J. McIlrath, “Absolute OH absorption cross sections (for Lidar measurements),” J. Quant. Spectrosc. Radiat. Transfer 32, 179–184 (1984).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

D. W. Senser, J. S. Morse, V. A. Cundy, “Construction and novel application of a flat flame burner facility to study hazardous waste combustion,” Rev. Sci. Instrum. 56, 1279–1284 (1985).
[CrossRef]

Other (9)

A. Rose, R. Gupta, “Combustion diagnostics by photo-deflection spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1339–1345.

R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations in Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989), Chap. 8.

Calculation by a computer code provided by V. S. Katta of Innovative Scientific Solutions, Inc., Dayton, Ohio.

Y. S. Touloukian, T. Makita, eds., Specific Heat-Nonmetallic Liquids and Gases, Vol. 6 of Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).

J. D. Cox, D. D. Wagman, V. A. Medvedev, Codata Key Values for Thermodynamics (Hemisphere, New York, 1989).

H. Harvey, A. P. Peskin, S. A. Klein, NIST/ASME Steam Properties Database: Version 2.2, NIST Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, Md., 2000).

H. L. Anderson, ed., A Physicist’s Desk Reference (American Institute of Physics, New York, 1989).

D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, Ann Arbor, Mich., 1994).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Pump and probe beam configuration. (b) A typical PTDS signal. The deflection of the probe beam is plotted as a function of time.

Fig. 2
Fig. 2

Schematic illustration of the experimental arrangement. PD, photodetector.

Fig. 3
Fig. 3

Typical photothermal deflection signal as a function of time. Deflection in microradians is plotted against time. The smooth solid curve is the best fit to the data.

Fig. 4
Fig. 4

(a) Absolute OH concentration in the McKenna burner as a function of the height above the burner surface. Premixed methane and oxygen with an equivalence ratio of Φ = 0.93 was used. Solid squares and circles represent the PTDS and the absorption measurements, respectively. Curves through the data were drawn to guide the eye. (b) Temperature as a function of height above the burner surface measured by PTDS.

Fig. 5
Fig. 5

Boltzmann plot to determine the temperature.

Fig. 6
Fig. 6

(dn/dT)/ρC p and diffusivity plotted as a function of temperature in a methane-oxygen flame with Φ = 0.93.

Fig. 7
Fig. 7

Amplitude of the PTDS signal as a function of the pump beam energy, showing the saturation of the OH transition.

Fig. 8
Fig. 8

Absorption of the laser energy, tuned to the Q 1(8) transition of OH, as a function of the wavelength (a) with and (b) without the etalon.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϕx, t=-1n0dndT8αeffE02π ρCp1sin θx-υxta2+8Dt3/2×exp-2x-υxt2/a2+8Dt,
θ>2 tan-12a2+8Dt1/2l,
ϕx, t=-AT, αeff, E0x-υxta2+8Dt3/2×exp-2x-υxt2/a2+8Dt,
AT, αeff, E0=1n0dndT8αeffE02π ρCp1sin θ.
αν=α0pν-ν0,
α0ν=2ΔνDln 2π1/2hν0NkBkk.
αeff=α0  gν-ν0pν-ν0exp-α0pν-ν0zdν,
Nkυ, J, T=N02J+1QvibQrotQelexp-hcνυ¯+νJ¯/kBT,
AT, αeff, E0=Ck+1BkkE0 exp-hcνk¯/kBT,
αν=α0pν-ν0,
α0=2ΔνDln 2π1/2hν0NkBkk
pν-ν0=exp-2ln 2ν-ν0/ΔνD2.
Eνν=E0gν-ν0,
Eνν=2ΔνLln 2π1/2 exp-2ln 2ν-ν0/ΔνL2.
ETz= Eννexp-ανzdν =E0  gν-ν0exp-α0pν-ν0zdν.
E0αeffz=dEAzdz =E0α0  gν-ν0pν-ν0×exp-α0pν-ν0zdν.
dn/dT=-n0-1T0T2,

Metrics