Abstract

The application of laser-induced breakdown spectroscopy to liquid samples, by use of a Nd:YAG laser in double-pulse excitation mode, is described. It is found that the line emission from a magnesium ion or atom is more than six times greater for double-pulse excitation than for single-pulse excitation. The effect of interpulse separation on the emission intensity of a magnesium ion and a neutral atom showed an optimum enhancement at a delay of 2.5–3 μs. The intensity of neutral atomic line emission dominates the ion emission from the plasma for higher interpulse (>10 μs) separation. A study of the temporal evolution of the line emission from the plasma shows that the background as well as line emission decays faster in double-pulse excitation than in single-pulse excitation. The enhancement in the emission seems to be dominated by an increase in the volume of the emitting gas. The limit of detection for a magnesium solution improved from 230 parts per billion (ppb) in single-pulse mode to 69 ppb in double-pulse mode.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.
  2. D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 2665–2672 (1997).
  3. H. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
    [CrossRef]
  4. C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
    [CrossRef]
  5. I. Schechter, “Laser-induced plasma spectroscopy, a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
    [CrossRef]
  6. F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2065–2087.
  7. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  8. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).
  9. R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
    [CrossRef]
  10. Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
    [CrossRef]
  11. K. J. Mason, J. M. Goldberg, “Characterization of laser plasma in a pulsed magnetic field. I. Spatially resolved emission studies,” Appl. Spectrosc. 45, 370–379 (1991).
    [CrossRef]
  12. K. J. Mason, J. M. Goldberg, “Characterization of a laser plasma in a pulsed magnetic field. II. Time resolved emission and absorption studies,” Appl. Spectrosc. 45, 1444–1455 (1991).
    [CrossRef]
  13. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  14. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  15. R. Nyga, W. Neu, “Double pulse technique for optical emission spectroscopy of ablation plasmas of samples in liquids,” Opt. Lett. 18, 747–749 (1993).
    [CrossRef] [PubMed]
  16. R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
    [CrossRef]
  17. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
    [CrossRef]
  18. A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
    [CrossRef]
  19. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  20. L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
    [CrossRef]
  21. L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
    [CrossRef]
  22. W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).
  23. F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

2002 (2)

L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

2001 (1)

2000 (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

1999 (1)

1998 (2)

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

1997 (4)

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 2665–2672 (1997).

I. Schechter, “Laser-induced plasma spectroscopy, a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

1996 (2)

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

1995 (2)

R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
[CrossRef]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

1993 (1)

1991 (3)

1984 (1)

Angel, S. M.

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Brust, J.

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Cielo, P.

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Cremers, D. A.

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
[CrossRef]

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Daniel, R. G.

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Detalles, V.

L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

Eland, K. L.

Ferris, M. J.

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
[CrossRef]

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Flower, W. L.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 2665–2672 (1997).

Foster, L. E.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Goldberg, J. M.

Hahn, D. W.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 2665–2672 (1997).

Hassan, N. M.

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

Hencken, K. R.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 2665–2672 (1997).

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Jenkins, C. W.

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Kaneko, K. I.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Leis, F.

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Loree, T. R.

Mason, K. J.

Mc Nesby, K. L.

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

McCarty, J. E.

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

Miziolek, A. W.

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Multari, R. A.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Neu, W.

Niemax, K.

Noll, R.

R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
[CrossRef]

Nyga, R.

Pennebaker, F. M.

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
[CrossRef]

Radziemski, L. J.

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sabsabi, M.

L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Sattmann, R.

R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
[CrossRef]

Schechter, I.

I. Schechter, “Laser-induced plasma spectroscopy, a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

Sdorra, W.

Sharma, R. C.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

Singh, J. P.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2065–2087.

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Spencer, W. A.

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

Spenser, W. A.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

St-Onge, L.

L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Stratis, D. N.

Sturm, V.

R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
[CrossRef]

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Uebbing, J.

Ueki, O.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Williamson, C. K.

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Yueh, F. Y.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2065–2087.

Zhang, H.

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2065–2087.

Anal. Chem. (2)

C. K. Williamson, R. G. Daniel, K. L. Mc Nesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. I. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses, Anal. Chem. 68, 2961–2966 (1996).
[CrossRef]

Anal. Chim. Acta (1)

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (7)

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

J. Air Waste Manage. Assoc. (1)

F. Y. Yueh, R. C. Sharma, H. Zhang, J. P. Singh, W. A. Spenser, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 747–749 (2002).

J. Phys. D Phys. (1)

R. Sattmann, V. Sturm, R. Noll, “Laser induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D Phys. 28, 2181–2187 (1995).
[CrossRef]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Opt. Lett. (1)

Rev. Anal. Chem. (1)

I. Schechter, “Laser-induced plasma spectroscopy, a review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

Spectrochim. Acta B (2)

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solid using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

L. St-Onge, V. Detalles, M. Sabsabi, “Enhanced laser induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

Spectrochim. Acta. B (1)

A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta. B 52, 25–39 (1997).
[CrossRef]

Other (3)

W. A. Spencer, F. M. Pennebaker, N. M. Hassan, J. E. McCarty, C. W. Jenkins, “Evaluation of emission spectroscopy for the online analysis of technetium,” Rep. BNF-003-98-0199 Rev (Savannah River Technology Center, Aiken, S. C., 2000).

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, New York, 2000), pp. 2065–2087.

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser Induced Plasma and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram for LIBS under double-laser-pulse excitation and ray diagram for making two synchronized lasers collinear.

Fig. 2
Fig. 2

Emission spectra of Mg (5 ppm) in single-pulse (laser, 130 mJ; gate delay/gate width, 1 μs/0.1 μs) and in double-pulse (laser 1, 130 mJ; laser 2, 100 mJ; delay between lasers, 2 μs; gate delay/gate width, 4 μs/0.1 μs) excitation.

Fig. 3
Fig. 3

Emission spectra of Mg (5 ppm) in double-pulse excitation mode with a change in interpulse delay (0 and 3 μs) between lasers (laser 1, 100 mJ; laser 2, 120 mJ; gate delay/gate width, 10 μs/10 μs).

Fig. 4
Fig. 4

Variation in emission intensity from Mg (5 ppm) ions and atoms with a change in delay between the lasers (laser 1, 100 mJ; laser 2, = 120 mJ; gate delay/gate width, 10 μs/10 μs).

Fig. 5
Fig. 5

Variation in signal and background emission from Mg (5 ppm) with detector gate delay from the first laser (laser 1, 130 mJ; laser 2, 100 mJ; delay between lasers, 2 μs; gate width, 0.1 μs).

Fig. 6
Fig. 6

Variation in emission (279.55 nm) from Mg with interpulse delay between the lasers for several laser (first) energies (gate delay/gate width, 10 μs/10 μs; laser 2, 120 mJ).

Fig. 7
Fig. 7

Variation in emission (279.55 nm) of Mg ions relative to concentration under single-pulse (laser, 140 mJ; gate delay/gate width, 5 μs/1 μs) and double-pulse [laser 1, 140 mJ; laser 2, 140 mJ; gate delay (from the first laser)/gate width, 5 μs/1 μs; delay between lasers, 2.5 μs] excitation. Confidence levels in the estimation of the LOD are given in parentheses.

Fig. 8
Fig. 8

Variation in emission intensity (285.20 nm) from neutral Mg as a function of concentration under single-pulse (laser, 130 mJ; gate delay/gate width, 5 μs/1μs) and double-pulse [Laser 1, 140 mJ; laser 2, 140 mJ; gate delay (from the first laser)/gate width, 5 μs/1 μs; delay between lasers, 2.5 μs] excitation. Confidence levels in the estimation of the LOD are given in parentheses.

Metrics