Abstract

The optical properties of laser-induced plasma generated from solid (Al alloy) and liquid (Mn, Cr, Mg, or Ti solutions) samples expanded across an external, steady magnetic field have been studied by atomic-emission spectroscopy. Various line emissions obtained from the constituents of the Al alloy and of the aqueous solution show an enhancement in intensity in the presence of an ∼5-kG magnetic field. The enhancement of the signal was nearly a factor of 2 for the minor constituents of the solid samples and a factor of 1.5 for the elements in liquid phase. Temporal evolution of the emission from the solid sample showed maximum enhancement in emission intensity at 3–10-μs time delay after plasma formation in the laser energy range 10–50 mJ. However, for the liquid sample the maximum signal was for a gate delay of 3–25 μs in the energy range 50–200 mJ. This enhancement in the emission intensity was found to be due to an increase in effective density of the plasma as a result of magnetic confinement when the plasma cooled after expansion. This enhanced emission was due to an increase in the rate of radiative recombination in the plasma.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, eds., Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).
  2. H. Zhang, F. Y. Yueh, J. P. Singh, “Laser induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
    [CrossRef]
  3. S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
    [CrossRef]
  4. F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).
  5. E. D. Lankaster, K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Spectroscopic analysis of five suppressant and refrigerants by laser-induced breakdown spectroscopy,” Appl. Opt. 38, 1476–1480 (1999).
    [CrossRef]
  6. J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).
  7. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  8. K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
    [CrossRef]
  9. F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., Vol. 3 (Wiley, New York, 2000), pp. 2065–2087.
  10. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).
  11. R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
    [CrossRef]
  12. R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
    [CrossRef]
  13. L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
    [CrossRef]
  14. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  15. Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
    [CrossRef]
  16. S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
    [CrossRef]
  17. K. J. Mason, J. M. Goldberg, “Characterization of laser plasma in a pulsed magnetic field: Part I. Spatially resolved emission studies,” Appl. Spectrosc. 45, 370–379 (1991).
    [CrossRef]
  18. K. J. Mason, J. M. Goldberg, “Characterization of a laser plasma in a pulsed magnetic field: Part II. Time resolved emission and absorption studies,” Appl. Spectrosc. 45, 1444–1455 (1991).
    [CrossRef]
  19. V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
    [CrossRef]
  20. A. Neogi, R. K. Thareja, “Laser produced carbon plasma expanding in vacuum low-pressure ambient gas and non-uniform magnetic field,” Phys. Plasmas 6, 365–371 (1999), and references therein.
    [CrossRef]
  21. J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
    [CrossRef]
  22. V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
    [CrossRef]
  23. H. R. Griem, Plasma Spectroscopy (McGraw Hill, New York, 1964).
  24. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloy by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  25. D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, D. W. Kim, “Quantitative analysis of aluminum impurities in Zn alloy by laser induced breakdown spectroscopy,” Appl. Spectrosc. 51, 22–29 (1997).
    [CrossRef]
  26. A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
    [CrossRef]
  27. V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

2002

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

2001

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

2000

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

1999

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

E. D. Lankaster, K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Spectroscopic analysis of five suppressant and refrigerants by laser-induced breakdown spectroscopy,” Appl. Opt. 38, 1476–1480 (1999).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

A. Neogi, R. K. Thareja, “Laser produced carbon plasma expanding in vacuum low-pressure ambient gas and non-uniform magnetic field,” Phys. Plasmas 6, 365–371 (1999), and references therein.
[CrossRef]

V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
[CrossRef]

1998

L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
[CrossRef]

1997

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, D. W. Kim, “Quantitative analysis of aluminum impurities in Zn alloy by laser induced breakdown spectroscopy,” Appl. Spectrosc. 51, 22–29 (1997).
[CrossRef]

1996

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

1995

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloy by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

1991

1990

J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
[CrossRef]

1985

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Angel, S. M.

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Buckley, S. G.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Cielo, P.

L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloy by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Cook, R. L.

V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

Cremers, D. A.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Daniel, R. G.

Eland, K. L.

Ferris, M. J.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Foster, L. E.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Goldberg, J. M.

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw Hill, New York, 1964).

Hahn, D. W.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Hassam, A. B.

J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
[CrossRef]

Hencken, K. R.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Huba, J. D.

J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
[CrossRef]

Ito, Y.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Johnsen, H. A.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Keane, C.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Kim, D. E.

Kim, D. W.

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Lankaster, E. D.

Lee, Y. I.

K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Mason, K. J.

McNesby, K. L.

Milchberg, H.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Miziolek, A. W.

Multari, R. A.

R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1483–1499 (1996).
[CrossRef]

Nakamura, S.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Neogi, A.

A. Neogi, R. K. Thareja, “Laser produced carbon plasma expanding in vacuum low-pressure ambient gas and non-uniform magnetic field,” Phys. Plasmas 6, 365–371 (1999), and references therein.
[CrossRef]

Noll, R.

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Noorhees, D.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Oh, K. J.

Pant, H. C.

V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
[CrossRef]

V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
[CrossRef]

Park, H. K.

Rai, A. K.

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

Rai, V. N.

V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
[CrossRef]

V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
[CrossRef]

V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sabasabi, M.

L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Sabsabi, M.

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Sattmann, R.

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Sharma, R. C.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

Shukla, M.

V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
[CrossRef]

V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
[CrossRef]

Singh, J. P.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., Vol. 3 (Wiley, New York, 2000), pp. 2065–2087.

V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

Skinner, H.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sneddon, J.

K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Song, K.

K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

St-Onge, L.

L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Stratis, D. N.

Sturm, V.

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Suckwer, S.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Thareja, R. K.

A. Neogi, R. K. Thareja, “Laser produced carbon plasma expanding in vacuum low-pressure ambient gas and non-uniform magnetic field,” Phys. Plasmas 6, 365–371 (1999), and references therein.
[CrossRef]

Ueki, O.

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Weisburg, A.

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Winske, D.

J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
[CrossRef]

Yoo, K. J.

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Yueh, F. Y.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., Vol. 3 (Wiley, New York, 2000), pp. 2065–2087.

V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

Zhang, H.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

H. Zhang, F. Y. Yueh, J. P. Singh, “Laser induced breakdown spectrometry as a multimetal continuous emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., Vol. 3 (Wiley, New York, 2000), pp. 2065–2087.

Anal. Chim. Acta

Y. Ito, O. Ueki, S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 229, 401–405 (1995).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Appl. Spectrosc. Rev.

K. Song, Y. I. Lee, J. Sneddon, “Application of laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 32, 183–235 (1997).
[CrossRef]

Crit. Rev. Anal. Chem.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

J. Air Waste Manag. Assoc.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, “Evaluation of the potential of laser induced breakdown spectroscopy for detection of trace elements in liquid,” J. Air Waste Manag. Assoc. 52, 174–185 (2002).

J. Phys. D

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel using multiple Q switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Laser Part. Beams

V. N. Rai, M. Shukla, H. C. Pant, “Some studies on pico second laser produced plasma expanding across a uniform external magnetic field,” Laser Part. Beams 16, 431–443 (1998).
[CrossRef]

Opt. Eng.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 38, 2248–2262 (2000).

Phys. Fluids B

J. D. Huba, A. B. Hassam, D. Winske, “Stability of sub-alfvenic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).
[CrossRef]

Phys. Plasmas

A. Neogi, R. K. Thareja, “Laser produced carbon plasma expanding in vacuum low-pressure ambient gas and non-uniform magnetic field,” Phys. Plasmas 6, 365–371 (1999), and references therein.
[CrossRef]

Phys. Rev. Lett.

S. Suckwer, H. Skinner, H. Milchberg, C. Keane, D. Noorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[CrossRef]

Pramana J. Phys.

V. N. Rai, M. Shukla, H. C. Pant, “An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma,” Pramana J. Phys. 52, 49–65 (1999).
[CrossRef]

Rec. Res. Dev. Appl. Spectrosc.

J. P. Singh, F. Y. Yueh, H. Zhang, K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Spectrochim. Acta Part B

L. St-Onge, M. Sabasabi, P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, A. Weisburg, “Parametric study of fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 2371–2383 (2001).
[CrossRef]

Waste Manage.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Other

L. J. Radziemski, D. A. Cremers, eds., Laser Induced Plasma and Applications (Marcel Dekker, New York, 1989).

F. Y. Yueh, J. P. Singh, H. Zhang, “Laser-induced breakdown spectroscopy: elemental analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., Vol. 3 (Wiley, New York, 2000), pp. 2065–2087.

V. N. Rai, J. P. Singh, F. Y. Yueh, R. L. Cook, “Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field,” paper AIAA-2001-2819, presented at the 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute for Aeronautics and Astronautics, Reston, Va., 2001).

H. R. Griem, Plasma Spectroscopy (McGraw Hill, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for recording LIBS spectra. (b) Arrangement showing the location of the sample between two small magnets fixed in mild steel structure.

Fig. 2
Fig. 2

Schematic diagrams of magnetic field line geometry (a) when the opposite poles of two magnets face each other (linear magnetic field line) and (b) when the same poles of two magnets face each other (cusp geometry of magnetic field lines).

Fig. 3
Fig. 3

LIBS spectra of Al alloy recorded at 25-mJ laser energy pulse at a gate delay of 5 μs and a gate width of 2 μs: (a) no magnetic field, (b) magnetic field present.

Fig. 4
Fig. 4

Variation in line emission intensity of Cr (λ = 357.87 nm) at 5-μs gate delay and 5 μs-gate width in spectra of an Al alloy relative to changes in laser energy in the absence (B = 0 kG) and in the presence (B = 5 kG) of a magnetic field.

Fig. 5
Fig. 5

Variation in intensity of Cr line emission (λ = 357.87 nm) from LIBS of an Al alloy relative to changes in gate delay at 14-mJ laser pulse energy in the absence (B = 0 kG) and in the presence (B = 5 kG) of a magnetic field. Gate width, 5 μs.

Fig. 6
Fig. 6

Variation in the ratio of emission intensity (I 2/I 1) from plasma and in the ratio of plasma expansion velocity (v 2/v 1) relative to changes in plasma β. The values of (v 2/v 1) and (I 2/I 1) were obtained from Eqs. (3) and (5) with t 1 = t 2 because no change in total emission time was noted for emission in the absence and in the presence of a magnetic field.

Fig. 7
Fig. 7

Hα spectra recorded from a liquid jet with 200-mJ laser energy at a gate delay of ∼7 μs and a gate width of 150 ns.

Fig. 8
Fig. 8

LIBS spectra of a Mn aqueous solution recorded at a laser energy of 140 mJ for a gate delay and a gate width of 10 μs in the absence (B = 0 kG) and in the presence (B = 5 kG) of a magnetic field.

Fig. 9
Fig. 9

Variation in the emission intensity of Mn (λ = 403.07 nm) in a liquid sample relative to changes in laser energy for a gate delay and a gate width of 10 μs (a) in the absence (B = 0 kG) and (b) in the presence (B = 5 kG) of a magnetic field.

Fig. 10
Fig. 10

Variation in the emission intensity of Mn (λ = 403.07 nm) in a liquid sample relative to changes in gate delay for a laser energy of ∼140 mJ, a gate width of 10 μs, and (a) no magnetic field, (b) a linear magnetic field (B = 5 kG), and (c) a cusp magnetic field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

12 Mv02=B028π43 πRB3,
RB=3Mv02B021/3.
v2v1=1-1β1/2,
I2I1=v1t1v2t23.
I2I1=1-1β3/2t1t23.
β=4.03×10-11neTeB-2.

Metrics