Abstract

Soils from various sites have been analyzed with the laser-induced breakdown spectroscopy (LIBS) technique for total elemental determination of carbon and nitrogen. Results from LIBS have been correlated to a standard laboratory-based technique (sample combustion), and strong linear correlations were obtained for determination of carbon concentrations. The LIBS technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon. The LIBS technique has the potential to be packaged into a field-deployable instrument.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.
  2. M. Schnitzer, U. Khan, Humic Substances in the Environment (Marcel Dekker, New York, 1972), pp. 2–3.
  3. F. J. Stevenson, Humus Chemistry (Wiley, New York, 1982), pp. 1–25.
  4. S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
    [CrossRef]
  5. S. Sjostrom, P. Mauchien, “Laser atomic spectroscopic techniques—the analytical performance for trace element analysis of solid and liquid samples,” Spectrochim. Acta Part B. 15, 153–180 (1991).
  6. S. Rudnick, R. Chen, “Laser-induced fluorescence of pyrene and other polycyclicaromatic hydrocarbons (PAH) in seawater,” Talanta 47, 907–919 (1998).
    [CrossRef]
  7. C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
    [CrossRef]
  8. O. Francioso, S. Sanchez-Cortes, V. Tugnoli, C. Ciavatta, L. Sitti, C. Gessa, “Infrared, Raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids,” Appl. Spectrosc. 50, 1165–1174 (1996).
    [CrossRef]
  9. O. Francioso, S. Sanchez-Cortes, V. Tugnoli, C. Ciavatta, C. Gessa, “Characterization of peat fulvic acid fractions by means of FT-IR, SERS, and 1H, 13C NMR spectroscopy,” Appl. Spectrosc. 52, 270–277 (1998).
    [CrossRef]
  10. O. Francioso, C. Ciavatta, S. Sanchez-Cortes, V. Tugnoli, L. Sitti, C. Gessa, “Spectroscopic characterization of soil organic matter in long-term amendment trials,” Soil Sci. 165, 495–504 (2000).
    [CrossRef]
  11. Y. Yang, H. A. Chase, “Applications of Raman and surface-enhanced Raman scattering techniques to humic substances,” Spectrosc. Lett. 31, 821–848 (1998).
    [CrossRef]
  12. T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
    [CrossRef]
  13. E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
    [CrossRef]
  14. K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
    [CrossRef]
  15. C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
    [CrossRef]
  16. M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buettgenbach, eds., Proc. SPIE4576, 188–195 (2002).
    [CrossRef]
  17. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
    [CrossRef]
  18. S. E. Trumbore, S. Zheng, “Comparison of fractionation methods for soil organic matter 14C analysis,” Radiocarbon. 38, 219–229 (1996).
  19. M. Schnitzer, Humic Substances in Soil, Sediment and Water (Wiley New York, 1985), pp. 303–325.
  20. I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
    [CrossRef]
  21. G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
    [CrossRef]

2002

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
[CrossRef]

2001

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

2000

O. Francioso, C. Ciavatta, S. Sanchez-Cortes, V. Tugnoli, L. Sitti, C. Gessa, “Spectroscopic characterization of soil organic matter in long-term amendment trials,” Soil Sci. 165, 495–504 (2000).
[CrossRef]

1999

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

1998

S. Rudnick, R. Chen, “Laser-induced fluorescence of pyrene and other polycyclicaromatic hydrocarbons (PAH) in seawater,” Talanta 47, 907–919 (1998).
[CrossRef]

O. Francioso, S. Sanchez-Cortes, V. Tugnoli, C. Ciavatta, C. Gessa, “Characterization of peat fulvic acid fractions by means of FT-IR, SERS, and 1H, 13C NMR spectroscopy,” Appl. Spectrosc. 52, 270–277 (1998).
[CrossRef]

Y. Yang, H. A. Chase, “Applications of Raman and surface-enhanced Raman scattering techniques to humic substances,” Spectrosc. Lett. 31, 821–848 (1998).
[CrossRef]

1996

1991

S. Sjostrom, P. Mauchien, “Laser atomic spectroscopic techniques—the analytical performance for trace element analysis of solid and liquid samples,” Spectrochim. Acta Part B. 15, 153–180 (1991).

1987

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

1978

S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
[CrossRef]

Beerling, D.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Breshears, D. D.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Brown, J. R.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Cannell, M.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Catlett, K. M.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Chase, H. A.

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

Y. Yang, H. A. Chase, “Applications of Raman and surface-enhanced Raman scattering techniques to humic substances,” Spectrosc. Lett. 31, 821–848 (1998).
[CrossRef]

Chen, R.

S. Rudnick, R. Chen, “Laser-induced fluorescence of pyrene and other polycyclicaromatic hydrocarbons (PAH) in seawater,” Talanta 47, 907–919 (1998).
[CrossRef]

Ciavatta, C.

Cox, P.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Cremers, D. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Curran, P.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Davis, M. F.

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

Dudley, R. L.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Ebinger, M. H.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Elam, C. C.

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

Evans, R. J.

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
[CrossRef]

Ferris, M. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Francioso, O.

Fyfe, C. A.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Galbacs, G.

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Garten, C.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buettgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Gessa, C.

Gornushikin, I. B.

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Gornushkin, I. B.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Grace, J.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Haraguchi, H.

S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
[CrossRef]

Hoover, C. M.

C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
[CrossRef]

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

Ineson, P.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Kammerdiener, S. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Khan, U.

M. Schnitzer, U. Khan, Humic Substances in the Environment (Marcel Dekker, New York, 1972), pp. 2–3.

Kiefer, W.

E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
[CrossRef]

Levesque, M.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Liang, E. J.

E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
[CrossRef]

Magrini, K. A.

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
[CrossRef]

Malhi, Y.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Martin, M.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buettgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Mathur, S. P.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Mauchien, P.

S. Sjostrom, P. Mauchien, “Laser atomic spectroscopic techniques—the analytical performance for trace element analysis of solid and liquid samples,” Spectrochim. Acta Part B. 15, 153–180 (1991).

Nasajpour, H.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Powlson, D.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Preston, C. M.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Read, D.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Rudnick, S.

S. Rudnick, R. Chen, “Laser-induced fluorescence of pyrene and other polycyclicaromatic hydrocarbons (PAH) in seawater,” Talanta 47, 907–919 (1998).
[CrossRef]

Sanchez-Cortes, S.

Schnitzer, M.

M. Schnitzer, Humic Substances in Soil, Sediment and Water (Wiley New York, 1985), pp. 303–325.

M. Schnitzer, U. Khan, Humic Substances in the Environment (Marcel Dekker, New York, 1972), pp. 2–3.

Shepherd, J.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Shipitalo, S.-E.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Sitti, L.

O. Francioso, C. Ciavatta, S. Sanchez-Cortes, V. Tugnoli, L. Sitti, C. Gessa, “Spectroscopic characterization of soil organic matter in long-term amendment trials,” Soil Sci. 165, 495–504 (2000).
[CrossRef]

O. Francioso, S. Sanchez-Cortes, V. Tugnoli, C. Ciavatta, L. Sitti, C. Gessa, “Infrared, Raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids,” Appl. Spectrosc. 50, 1165–1174 (1996).
[CrossRef]

Sjostrom, S.

S. Sjostrom, P. Mauchien, “Laser atomic spectroscopic techniques—the analytical performance for trace element analysis of solid and liquid samples,” Spectrochim. Acta Part B. 15, 153–180 (1991).

Smith, B. W.

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Stevenson, F. J.

F. J. Stevenson, Humus Chemistry (Wiley, New York, 1982), pp. 1–25.

Trumbore, S. E.

S. E. Trumbore, S. Zheng, “Comparison of fractionation methods for soil organic matter 14C analysis,” Radiocarbon. 38, 219–229 (1996).

Tugnoli, V.

Unkefer, P. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

Wang, T.

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

Weeks, S. J.

S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
[CrossRef]

Winefordner, J. D.

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
[CrossRef]

Woodward, I.

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

Wullschleger, S.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buettgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Xiao, Y.

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

Yang, Y.

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
[CrossRef]

Y. Yang, H. A. Chase, “Applications of Raman and surface-enhanced Raman scattering techniques to humic substances,” Spectrosc. Lett. 31, 821–848 (1998).
[CrossRef]

Zheng, S.

S. E. Trumbore, S. Zheng, “Comparison of fractionation methods for soil organic matter 14C analysis,” Radiocarbon. 38, 219–229 (1996).

Anal. Chem.

S. J. Weeks, H. Haraguchi, J. D. Winefordner, “Improvement of detection limits in laser-excited atomic fluorescence flame spectrometry,” Anal. Chem. 50, 360–368 (1978).
[CrossRef]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Appl. Spectrosc.

Can. J. Soil Sci.

C. M. Preston, S.-E. Shipitalo, R. L. Dudley, C. A. Fyfe, S. P. Mathur, M. Levesque, “Comparison of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles,” Can. J. Soil Sci. 67, 187–198,(1987).
[CrossRef]

Environ. Poll.

K. A. Magrini, R. J. Evans, C. M. Hoover, C. C. Elam, M. F. Davis, “Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results,” Environ. Poll. 116(Suppl. 1), S255–S268 (2002).
[CrossRef]

C. M. Hoover, K. A. Magrini, R. J. Evans, “Soil carbon content and character in an old-growth forest in northern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS),” Environ. Poll. 116(Suppl. 1), S269–S275 (2002).
[CrossRef]

J. Environ. Qual.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001).
[CrossRef]

J. Environ. Sci. Health A

T. Wang, Y. Xiao, Y. Yang, H. A. Chase, “Fourier transform surface-enhanced Raman spectra of fulvic acid from weathered coal adsorbed on gold electrodes,” J. Environ. Sci. Health A 34, 749–765 (1999).
[CrossRef]

Radiocarbon.

S. E. Trumbore, S. Zheng, “Comparison of fractionation methods for soil organic matter 14C analysis,” Radiocarbon. 38, 219–229 (1996).

Soil Sci.

O. Francioso, C. Ciavatta, S. Sanchez-Cortes, V. Tugnoli, L. Sitti, C. Gessa, “Spectroscopic characterization of soil organic matter in long-term amendment trials,” Soil Sci. 165, 495–504 (2000).
[CrossRef]

Spectrochim Acta Part B

G. Galbacs, I. B. Gornushikin, B. W. Smith, J. D. Winefordner, “Semiquantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim Acta Part B 56, 1159–1173 (2001).
[CrossRef]

Spectrochim. Acta Part B.

S. Sjostrom, P. Mauchien, “Laser atomic spectroscopic techniques—the analytical performance for trace element analysis of solid and liquid samples,” Spectrochim. Acta Part B. 15, 153–180 (1991).

Spectrosc. Lett.

Y. Yang, H. A. Chase, “Applications of Raman and surface-enhanced Raman scattering techniques to humic substances,” Spectrosc. Lett. 31, 821–848 (1998).
[CrossRef]

E. J. Liang, Y. Yang, W. Kiefer, “Surface-enhanced Raman spectra of fulvic and humic acids adsorbed on copper electrodes,” Spectrosc. Lett. 32, 689–701 (1999).
[CrossRef]

Talanta

S. Rudnick, R. Chen, “Laser-induced fluorescence of pyrene and other polycyclicaromatic hydrocarbons (PAH) in seawater,” Talanta 47, 907–919 (1998).
[CrossRef]

Other

D. Read, D. Beerling, M. Cannell, P. Cox, P. Curran, J. Grace, P. Ineson, Y. Malhi, D. Powlson, J. Shepherd, I. Woodward, in The Role of Land Carbon Sinks in Mitigating Global Climate Change (The Royal Society, London, 2001), pp. 1–27.

M. Schnitzer, U. Khan, Humic Substances in the Environment (Marcel Dekker, New York, 1972), pp. 2–3.

F. J. Stevenson, Humus Chemistry (Wiley, New York, 1982), pp. 1–25.

M. Schnitzer, Humic Substances in Soil, Sediment and Water (Wiley New York, 1985), pp. 303–325.

M. Martin, S. Wullschleger, C. Garten, “Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen,” in Advanced Environmental Sensing Technology II, T. Vo-Dinh, S. Buettgenbach, eds., Proc. SPIE4576, 188–195 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

LIBS experimental setup for carbon and nitrogen detection.

Fig. 2
Fig. 2

LIBS spectrum for carbon in soil.

Fig. 3
Fig. 3

LIBS signal versus soil carbon content measured with the LECO CN-analyzer.

Fig. 4
Fig. 4

LIBS signal for nitrogen in soils.

Fig. 5
Fig. 5

LIBS signal as a function of carbon and nitrogen in non-acid-washed soils.

Fig. 6
Fig. 6

LIBS signal for different non-acid-washed (inset) and acid-washed soils.

Fig. 7
Fig. 7

LIBS signal (ratio of C/Si) as a function of the percentage of carbon in acid washed soils.

Tables (1)

Tables Icon

Table 1 Measurement of Standard Deviation for Two Soils with Two Techniques for Carbon Determinationa

Metrics