Abstract

The influence of pressure on laser-induced incandescence (LII) is investigated systematically in premixed, laminar, sooting ethylene/air flames at 1–15 bar with wavelength-, laser fluence-, and time-resolved detection. In the investigated pressure range the LII signal decay rate is proportional to pressure. This observation is consistent with the prediction of heat-transfer models in the free-molecular regime. Pressure does not systematically affect the relationship between LII signal and laser fluence. With appropriate detection timing the pressure influence on LII signal’s proportionality to soot volume fraction obtained by extinction measurements is only minor compared with the variation observed in different flames at fixed pressures. The implications for particle sizing and soot volume fraction measurements using LII techniques at elevated pressures are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  2. D. J. Bryce, N. Ladommatos, H. Zhao, “Quantitative investigation of soot distribution by laser-induced incandescence,” Appl. Opt. 39, 5012–5022 (2000).
    [CrossRef]
  3. C. Shaddix, K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  4. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).
  5. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  6. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
    [CrossRef]
  7. S. Schraml, S. Will, A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
    [CrossRef]
  8. R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
    [CrossRef]
  9. B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
    [CrossRef]
  10. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
    [CrossRef]
  11. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  12. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).
  13. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [CrossRef]
  14. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  15. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  16. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
    [CrossRef]
  17. A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  18. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984~).
    [CrossRef]
  19. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  20. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
    [CrossRef]
  21. G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
    [CrossRef]
  22. J. E. Dec, “Soot distribution in a D.I. Diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Tech. Paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).
  23. J. E. Dec, C. Espey, “Ignition and early soot formation in a DI Diesel engine using multiple 2-D imaging diagnostics,” SAE Tech. Paper 950456 (Society of Automotive Engineers, Warrendale, Pa., 1995).
    [CrossRef]
  24. G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
    [CrossRef]
  25. J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
    [CrossRef]
  26. K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
    [CrossRef]
  27. G. Bruneaux, D. Verhoeven, T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999-01-3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
    [CrossRef]
  28. D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
    [CrossRef]
  29. R. Starke, P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
    [CrossRef]
  30. B. F. Kock, T. Eckhardt, P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).
  31. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  32. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  33. D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.
  34. D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.
  35. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
    [CrossRef]
  36. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
    [CrossRef]
  37. H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.
  38. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
    [CrossRef]
  39. M. Williams, S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, UK, 1991).
  40. A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
    [CrossRef]
  41. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  42. K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
    [CrossRef]
  43. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
    [CrossRef]
  44. H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).
  45. B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
    [CrossRef]
  46. R. L. Vander Wal, T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
    [CrossRef]
  47. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  48. D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.
  49. S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).
  50. P. E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  51. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
    [CrossRef]
  52. J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
    [CrossRef]
  53. R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).
  54. H. Mätzing, H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).
  55. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
    [CrossRef] [PubMed]
  56. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
    [CrossRef]
  57. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
    [CrossRef]

2002 (1)

R. Starke, P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
[CrossRef]

2001 (3)

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

2000 (5)

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

D. J. Bryce, N. Ladommatos, H. Zhao, “Quantitative investigation of soot distribution by laser-induced incandescence,” Appl. Opt. 39, 5012–5022 (2000).
[CrossRef]

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

1999 (4)

R. L. Vander Wal, T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
[CrossRef]

1998 (4)

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

1997 (1)

1996 (8)

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

H. Mätzing, H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

C. Shaddix, K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

1995 (4)

1994 (3)

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

1990 (1)

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

1984 (1)

1978 (1)

J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
[CrossRef]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

1973 (1)

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Aldén, M.

P. E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

Axelsson, B.

B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
[CrossRef]

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

Bachalo, W. D.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Baritaud, T.

G. Bruneaux, D. Verhoeven, T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999-01-3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Baronavski, A. P.

J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
[CrossRef]

Benecchi, S.

Bengtsson, P. E.

B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
[CrossRef]

P. E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Bengtsson, P.-E.

Bockhorn, H.

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.

Bruneaux, G.

G. Bruneaux, D. Verhoeven, T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999-01-3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Bryce, D. J.

Campbell, I. G.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

Chang, H.

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Charalampopoulos, T. T.

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Chippior, W. L.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Choi, M. Y.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Cignoli, F.

Clavel, D. J.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Collin, R.

B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
[CrossRef]

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Dec, J. E.

J. E. Dec, “Soot distribution in a D.I. Diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Tech. Paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).

J. E. Dec, C. Espey, “Ignition and early soot formation in a DI Diesel engine using multiple 2-D imaging diagnostics,” SAE Tech. Paper 950456 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Dietrich, D. L.

Donnelly, V. M.

J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Eckhardt, T.

B. F. Kock, T. Eckhardt, P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).

Espey, C.

J. E. Dec, C. Espey, “Ignition and early soot formation in a DI Diesel engine using multiple 2-D imaging diagnostics,” SAE Tech. Paper 950456 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
[CrossRef]

Filippov, A. V.

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Gareau, D.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Geitlinger, H.

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

Gg. Wagner, H.

H. Mätzing, H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).

Giesen, A.

D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gülder, Ö. L.

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

Gupta, S.

Hanisch, S.

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

Hochgreb, S.

Hofeldt, D. L.

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Inagaki, K.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Jander, H.

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

Jensen, K. A.

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.

Kayes, D.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kock, B. F.

B. F. Kock, T. Eckhardt, P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).

Köhler, J.

G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
[CrossRef]

Krikorian, O. H.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Ladommatos, N.

Lehre, T.

H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.

Leider, H. R.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Leipertz, A.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Schraml, S. Will, A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Litzinger, T. A.

J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Liu, F.

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Loyalka, S.

M. Williams, S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, UK, 1991).

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

Martin, S. R.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Mätzing, H.

H. Mätzing, H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).

McDonald, J. R.

J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
[CrossRef]

Medlock, J. E.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

Melton, L. A.

Mewes, B.

Michelsen, H. A.

Mitchell, D. L.

J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Nakakita, K.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Neill, W. S.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Ni, T.

Pape, T.

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

Pinson, J.

J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Pinson, J. A.

Poling, B.

R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

Prausnitz, J.

R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

Reid, R.

R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

Rosner, D. E.

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

Roth, P.

R. Starke, P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
[CrossRef]

D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

B. F. Kock, T. Eckhardt, P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Sawchuk, R. A.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Schraml, S. Will, A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Seitzman, J. M.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

Shaddix, C.

C. Shaddix, K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Shaddix, C. R.

Smallwood, G. J.

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.

Smyth, K.

C. Shaddix, K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Smyth, K. C.

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

Snelling, D. R.

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.

Starke, R.

R. Starke, P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
[CrossRef]

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Stolz, W.

G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
[CrossRef]

Streibel, T.

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

Suntz, R.

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Takasu, S.

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Verhoeven, D.

G. Bruneaux, D. Verhoeven, T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999-01-3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

Wagner, H. Gg.

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

Wainner, R. T.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

West, J. R.

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Schraml, S. Will, A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Williams, M.

M. Williams, S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, UK, 1991).

Wiltafsky, G.

G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
[CrossRef]

Witze, P. O.

Woiki, D.

D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
[CrossRef]

Young, D. A.

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Zhao, H.

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zizak, G.

AIAA J. (1)

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Appl. Opt. (13)

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, “Cavity ringdown and laser-induced incandescence measurements of soot,” Appl. Opt. 38, 1444–1451 (1999).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999).
[CrossRef]

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

D. J. Bryce, N. Ladommatos, H. Zhao, “Quantitative investigation of soot distribution by laser-induced incandescence,” Appl. Opt. 39, 5012–5022 (2000).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984~).
[CrossRef]

Appl. Phys. B (4)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical and microscopy investigations of soot structure alterations by laser-induced incandescence,” Appl. Phys. B 67, 115–123 (1998).
[CrossRef]

B. Axelsson, R. Collin, P. E. Bengtsson, “Laser-induced incandescence for soot particle size and colume measurements using on-line extinction calibration,” Appl. Phys. B 72, 367–372 (2001).
[CrossRef]

P. E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Carbon (1)

H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamic properties of carbon up to the critical point,” Carbon 11, 555–563 (1973).
[CrossRef]

Chem. Phys. (1)

J. R. McDonald, A. P. Baronavski, V. M. Donnelly, “Multiphoton-vacuum-ultraviolet laser photodissociation of acetylene: emission from electronically excited fragments,” Chem. Phys. 33, 161–170 (1978).
[CrossRef]

Comb. Flame (1)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size determined using laser-induced incandescence?” Comb. Flame 116, 291–296 (1999).
[CrossRef]

Combust. Flame (5)

C. Shaddix, K. Smyth, “Laser-induced incandescence measurements of soot production on steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. Starke, P. Roth, “Soot particle sizing by LII during shock tube pyrolysis of C6H6,” Combust. Flame 127, 2278–2285 (2002).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

Int. J. Heat Mass Transfer (1)

A. V. Filippov, D. E. Rosner, “Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime,” Int. J. Heat Mass Transfer 43, 127–138 (2000).
[CrossRef]

J. Aerosol Sci. (1)

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Heat Transfer (1)

G. J. Smallwood, D. R. Snelling, F. Liu, Ö. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (6)

H. Mätzing, H. Gg. Wagner, “Measurements about the influence of pressure on carbon formation in premixed laminar C2H4-air flames,” Proc. Combust. Inst. 21, 1047–1055 (1996).

D. Woiki, A. Giesen, P. Roth, “Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves,” Proc. Combust. Inst. 28, 2531–2537 (2000).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” Proc. Combust. Inst. 26, 2277–2284 (1996).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” Proc. Combust. Inst. 26, 2387–2395 (1996).

H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” Proc. Combust. Inst. 27, 1613–1621 (1998).

S. Hanisch, H. Jander, T. Pape, H. Gg. Wagner,“Soot mass growth and coagulation of soot particles in C2H4/air-flames at 15 bar,” Proc. Combust. Inst. 25, 577–584 (1994).

Proc. R. Soc. London Ser. A (1)

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1990).
[CrossRef]

Other (18)

D. R. Snelling, G. J. Smallwood, Ö. L. Gülder, F. Liu, “A calibration independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, California, 25–28 March 2001.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

M. Williams, S. Loyalka, Aerosol Science: Theory and Practice (Pergamon, Oxford, UK, 1991).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” Proceedings of NHTC, presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, Ö. L. Gülder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” presented at AGARD the 90th Symposium of the Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, 20–24 October 1997.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, W. D. Bachalo, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE Tech. Paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

H. Bockhorn, B. Jungfleisch, T. Lehre, R. Suntz, “Simultaneous assessment of particle size distributions and gas temperatures from time-resolved laser-induced incandescence,” Conference Proceedings of the European Congress of Chemical Engineering (ECCE), Nuernberg, 26–28 June 2001.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, “In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence,” SAE Tech. Paper 2000-01-1994 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

S. Schraml, S. Will, A. Leipertz, “Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines,” SAE Tech. Paper 2000-01-2002 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

B. F. Kock, T. Eckhardt, P. Roth, “In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII),” Proc. Combust. Inst. (to be published).

J. E. Dec, “Soot distribution in a D.I. Diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE Tech. Paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).

J. E. Dec, C. Espey, “Ignition and early soot formation in a DI Diesel engine using multiple 2-D imaging diagnostics,” SAE Tech. Paper 950456 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time resolved measurements of the soot volume fraction in a combustion Diesel jet,” SAE Tech. Paper Series 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
[CrossRef]

J. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurements by laser-induced incandescence,” SAE Tech. Paper 1999-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

G. Bruneaux, D. Verhoeven, T. Baritaud, “High-pressure Diesel spray and combustion visualization in a transparent model Diesel engine,” SAE Tech. Paper 1999-01-3649 (Society of Automotive Engineers, Warrendale, Pa., 1999).
[CrossRef]

R. Reid, J. Prausnitz, B. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. ICCD, intensified charged coupled device.

Fig. 2
Fig. 2

Raw images obtained with the spectrograph/camera setup. The vertical axis shows the spatial coordinate along the height of the laser beam corresponding to the variation of laser fluence, whereas the horizontal axis shows the dispersed laser-induced emission. Rayleigh scattering at 532 nm is the dominant signal. (a) Low laser fluence, (b) high laser fluence (the arrows indicate the plateau region), (c) Top-hat profile of the laser beam in line of sight of detection.

Fig. 3
Fig. 3

LII emission spectrum at 15 bar extracted from the raw images by spatial integration over the position that corresponds to the plateau region. The dips at 455 and 496 nm are artifacts caused by an interference filter used to reduce elastically scattered light.

Fig. 4
Fig. 4

Logarithmic plot of the LII signal (integrated in the 500 ± 15 nm emission wavelength range) versus detection timing for pressures from 1 to 15 bar. The signals are normalized to their maximum for each pressure.

Fig. 5
Fig. 5

Pressure dependence of the LII decay rate coefficient.

Fig. 6
Fig. 6

LII signal (integrated in the 400 ± 15 nm emission wavelength range) versus laser fluence for various pressures.

Fig. 7
Fig. 7

Soot volume fraction measured by LII (integrated in the 400 ± 15 nm emission wavelength range) versus soot volume fraction measured by laser extinction for 1, 10, and 15 bar at various heights above the burner, C/O ratios, and gas velocities.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Kn=Λ/a,
Λ=12kBTgp,
qf=4πa2p8kBTgπmg1/2Tp-TgTg,
qc=4πakTp-Tg,
Tp-TgTg=Tp0Tg-1exp-tτ,
τ=2acpρpTg3ctp,
SLIIt, λ  a3κ expκexpκ-12Tp0Tg-1exp-tτ.
II0=exp-Kλλ fvl,
Kλ=-6πEm=6π Imm2-1m2+2=36πnλkλnλ2-kλ2+22+4nλ2kλ2,

Metrics