Abstract

Sensitive photoacoustic detection of ammonia with near-infrared diode lasers (1.53 µm) and a novel differential acoustic resonator is described; a sensitivity of 0.2 parts per million volume (signal-to-noise ratio = 1) is attained. To eliminate adsorption-desorption processes of the polar NH3 molecules, a relatively high gas flow of 300 SCCM was used for the ammonia-nitrogen mixture. The results are compared with recent ammonia measurements with a NIR diode and absorption spectroscopy used for detection and photoacoustic experiments performed with an infrared quantum-cascade laser. The performance of the much simpler and more compact setup introduced here was comparable with these previous state-of-the-art measurements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.
  2. M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta A 51, 1579–1599 (1995).
    [CrossRef]
  3. M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
    [CrossRef] [PubMed]
  4. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  5. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
    [CrossRef]
  6. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
    [CrossRef]
  7. R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4387–4394 (2001).
    [CrossRef]
  8. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
    [CrossRef]
  9. M. Fehér, Y. Jiang, P. Maier, A. Miklós, “Optoacoustic trace gas monitoring with near infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994).
    [CrossRef]
  10. A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
    [CrossRef]
  11. A. Schmohl, A. Miklos, P. Hess, “Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia,” Appl. Opt. 40, 2571–2578 (2001).
    [CrossRef]
  12. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Capusso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
    [CrossRef]
  13. J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
    [CrossRef]
  14. J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 78–80.
  15. A. Miklós, P. Hess, Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
    [CrossRef]
  16. S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
    [CrossRef]
  17. A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
    [CrossRef]

2001 (4)

1999 (1)

1998 (4)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

1997 (1)

1995 (1)

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta A 51, 1579–1599 (1995).
[CrossRef]

1994 (2)

M. Fehér, Y. Jiang, P. Maier, A. Miklós, “Optoacoustic trace gas monitoring with near infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

1993 (1)

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Baillargeon, J. N.

Bozóki, Z.

A. Miklós, P. Hess, Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

Brassington, D. J.

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.

Capusso, F.

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Cho, A. Y.

Claps, R.

Curl, R. F.

Ebert, V.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

Englich, F. V.

Feher, M.

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta A 51, 1579–1599 (1995).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
[CrossRef] [PubMed]

Fehér, M.

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Gmachl, C.

Hanson, R. K.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Harren, F. J. M.

Henningsen, J.

J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
[CrossRef]

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 78–80.

Hess, P.

A. Miklós, P. Hess, Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

A. Schmohl, A. Miklos, P. Hess, “Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia,” Appl. Opt. 40, 2571–2578 (2001).
[CrossRef]

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Hutchinson, A. L.

Jaeger, T.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Jeffries, J. B.

Jiang, Y.

M. Fehér, Y. Jiang, P. Maier, A. Miklós, “Optoacoustic trace gas monitoring with near infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

Jiménez, J. I.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Kamm, S.

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Leleux, D. P.

Linnerud, I.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

Maier, J. P.

Maier, P.

Martin, P. A.

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta A 51, 1579–1599 (1995).
[CrossRef]

M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
[CrossRef] [PubMed]

Mashni, M.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Melander, N.

J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
[CrossRef]

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 78–80.

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Miklos, A.

Miklós, A.

A. Miklós, P. Hess, Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

M. Fehér, Y. Jiang, P. Maier, A. Miklós, “Optoacoustic trace gas monitoring with near infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994).
[CrossRef]

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Mohácsi, A.

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Oomens, J.

Paldus, B. A.

Parker, D. H.

Pitz, H.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

Pleban, K.-U.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

Richter, D.

Rohrbacher, A.

Schaefer, S.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

Schäfer, S.

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Schmohl, A.

Sivco, D. L.

Sneider, J.

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Soliva, A. M.

Spence, T. G.

Tittel, F. K.

Webber, M. E.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, 4395–4403 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Zare, R. N.

Appl. Opt. (6)

Appl. Phys. B (5)

S. Schaefer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, “Sensitive detection of methane with a 1.65 µm diode laser by photoacoustic and absorption spectroscopy,” Appl. Phys. B 66, 511–516 (1998).
[CrossRef]

A. Miklós, Z. Bozóki, Y. Jiang, M. Feher, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength-modulated diode lasers,” Appl. Phys. B 58, 483–492 (1994).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67, 297–305 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. I. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. Miklós, P. Hess, Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001).
[CrossRef]

Spectrochim. Acta A (1)

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta A 51, 1579–1599 (1995).
[CrossRef]

Other (3)

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 78–80.

A. Miklós, P. Hess, A. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, Woodbury, N.Y., 1999), pp. 126–128.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Block diagram of the setup used for the PA detection of NH3 including the gas-mixing system (MFC, mass flow controller).

Fig. 2
Fig. 2

Schematic drawing of the differential metal cell.

Fig. 3
Fig. 3

Logarithmic plot of the PA signal versus NH3 concentration measured with the 5-mW Mitsubishi DFB diode. Diamonds, measured PA signal; solid line, vectorial fit. The inset is a linear plot of the PA signal versus concentration (lower part of the curve) showing also the background at 0 ppm.

Fig. 4
Fig. 4

Logarithmic plot of PA signal versus NH3 concentration measured with the 42-mW GEC-Marconi diode. Triangles, low-power PA measurement; circles, high-power PA measurement; solid curve, vectorial fit. Standard deviations of signal and concentration are shown as error bars. Dashed-dotted line: straight line with slope obtained from vector fit.

Fig. 5
Fig. 5

Calibration measurements for NH3. Solid line: straight line drawn through the origin with the slope obtained from the fit of Fig. 4; triangles, PA signals of three certified gas mixtures with 5.38-, 50.1-, and 96.7-ppmV NH3.

Fig. 6
Fig. 6

Comparison of the rise of the PA signal after the flow is switched from pure N2 to a 50-ppm NH3-N2 mixture for a cleaned brass cell (upper curve) and PP cell (lower curve).

Fig. 7
Fig. 7

Response time of the PP detector at different flow rates Φ.

Tables (2)

Tables Icon

Table 1 Comparison of the Optical Multipass and PA NH3 Sensors

Tables Icon

Table 2 Comparison of PA NH3 Detection with QC (IR) and NIR Lasers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

UPA=S2+2SB cosθPA-θBG+B2+N21/2.
UPA=ax2+bx+c21/2,
Pabs=Pinc1-exp-αl,
b=-2ac2-N2cosθPA-θBG.
x=UPA2-c2a2+b24a41/2- b2a2.

Metrics