Abstract

We have designed a novel rotational Raman and Rayleigh lidar system that incorporates a simple holographic optical element. The hologram simultaneously disperses and focuses the backscattered signal light so that narrow spectral features can be isolated and detected with high efficiency. By measuring the relative strength of several nitrogen rotational Raman lines, we can obtain an accurate temperature of the atmosphere at a given altitude without the need for external calibration. Simultaneous photon counting of the Rayleigh backscatter signal permits temperature measurements at much higher altitudes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1971).
    [CrossRef]
  2. A. Cohen, J. A. Cooney, K. N. Geller, “Atmospheric temperature profiles from measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976).
    [CrossRef] [PubMed]
  3. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  4. D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  5. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, M. V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  6. P. A. T. Haris, C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the Second Topical Symposium on Combined Optical-Microwave Earth and Atmospheric Sensing (Institute of Electrical and Electronics Engineers, New York, 1995), 141–144.
    [CrossRef]
  7. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  8. G. E. Walrafen, “Slitless optical-fiber laser-Raman spectrometer employing a concave holographic grating,” Appl. Spectrosc. 31, 295–298 (1977).
    [CrossRef]
  9. J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
    [CrossRef]
  10. T. A. Berkoff, D. N. Whiteman, R. D. Rallison, G. K. Schwemmer, L. Ramon-Izquierdo, H. Plotkin, “Remote detection of Raman scattering by use of a holographic optical element as a dispersive telescope,” Opt. Lett. 25, 1201–1203 (2000).
    [CrossRef]
  11. G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
    [CrossRef]
  12. A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
    [CrossRef]
  13. R. J. Sica, P. S. Argall, C. T. Sparrow, S. Sargoytchev, S. Flatt, E. F. Borra, L. Girard, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
    [CrossRef] [PubMed]
  14. T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
    [CrossRef]
  15. M. R. Gross, T. J. McGee, R. A. Ferrare, U. N. Singh, P. Kimvilakani, “Temperature measurements made with a combined Rayleigh–Mie and Raman lidar,” Appl. Opt. 36, 5987–5995 (1997).
    [CrossRef] [PubMed]
  16. M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
    [CrossRef]
  17. R. W. Meier, “Magnification and third-order aberrations in holography,” J. Opt. Soc. Am. 55, 987–992 (1965).
  18. Y. Amitai, A. A. Friesem, V. Weiss, “Designing holographic lenses with different recording and readout wavelengths,” J. Opt. Soc. Am. A 7, 80–86 (1990).
    [CrossRef]
  19. G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, eds., Optics of Diffractive and Gradient-Index Elements and Systems, Vol. PM42 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1997).
  20. G. C. Herring, W. K. Bischel, “Model of the rotational Raman gain coefficients for N2 in the atmosphere,” Appl. Opt. 26, 2988–2994 (1987).
    [CrossRef] [PubMed]
  21. I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
    [CrossRef]
  22. P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
    [CrossRef]
  23. C.-Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
    [CrossRef] [PubMed]
  24. J. R. Jenness, D. B. Lysak, C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997).
    [CrossRef] [PubMed]
  25. G. Hertzberg, Spectra of Diatomic Molecules, 2nd ed., Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1989), pp. 124–125.
  26. Y. Arshinov, S. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
    [CrossRef]
  27. γ2 of Ref. 3 is for an excitation wavelength of 488 nm. Because this value is common to all of the nitrogen RRS lines, the precise value is not necessary to determine the temperature of our scheme. Thus we used the quoted value for 488 nm.
  28. The equation for the transmission of the atmosphere is based on a numerical fit to a low-aerosol content, mid-latitude, springtime lowtran atmosphere at the laser wavelength.
  29. The overall optical efficiency value was estimated from the product of the efficiencies for the telescope fiber coupling (90%), the HOE itself (35%), the coupling into the individual fibers (90%), and the PMTs (10%).
  30. For the Rayleigh model, the mass spectrometer incoherent scatter (MSIS-E-90) model atmosphere was used instead of the International Civil Aviation Organization standard used for the Raman model. The numbers were generated with on-line software available at http://nssdc.gsfc.nasa.gov/space/model/atmos/msise.html and based on Ref. 27.
  31. A. E. Hedin, “Extension of the MSIS thermosphere model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

1997 (2)

1996 (1)

1995 (1)

1993 (4)

I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, M. V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

A. E. Hedin, “Extension of the MSIS thermosphere model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

1990 (1)

1987 (1)

1980 (1)

A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

1977 (1)

1976 (1)

1974 (1)

1971 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1971).
[CrossRef]

1970 (1)

G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

1967 (1)

M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
[CrossRef]

1965 (1)

Alvarez, R. J.

Amitai, Y.

Andersen, G.

J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
[CrossRef]

Argall, P. S.

Arshinov, Y.

Berkoff, T. A.

Bischel, W. K.

Bobrovnikov, S.

Borra, E. F.

Brasseur, J. K.

J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
[CrossRef]

Caldwell, L. M.

Chanin, M. L.

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Chanin, M.-L.

A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Cohen, A.

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1971).
[CrossRef]

Cooney, J. A.

Ferrare, R. A.

Flatt, S.

Friesem, A. A.

Geller, K. N.

Girard, L.

Gross, M. R.

Gurdev, L. L.

I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
[CrossRef]

Haris, P. A. T.

P. A. T. Haris, C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the Second Topical Symposium on Combined Optical-Microwave Earth and Atmospheric Sensing (Institute of Electrical and Electronics Engineers, New York, 1995), 141–144.
[CrossRef]

J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
[CrossRef]

Hauchecorne, A.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Hedin, A. E.

A. E. Hedin, “Extension of the MSIS thermosphere model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

Herring, G. C.

Hertzberg, G.

G. Hertzberg, Spectra of Diatomic Molecules, 2nd ed., Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1989), pp. 124–125.

Ivanova, I. D.

I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
[CrossRef]

Jenness, J. R.

Keckhut, P.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

Kent, G. S.

G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

Kimvilakani, P.

Knize, R. J.

J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
[CrossRef]

Krueger, D. A.

Lahmann, W.

Lapp, M.

Leblanc, T.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

Lysak, D. B.

McDermid, I. S.

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

McGee, T. J.

Meier, R. W.

Mitev, M. V.

Mitev, V. M.

I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
[CrossRef]

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Pandya, T. P.

M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
[CrossRef]

Penney, C. M.

Pepler, S. J.

Philbrick, C. R.

J. R. Jenness, D. B. Lysak, C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997).
[CrossRef] [PubMed]

P. A. T. Haris, C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the Second Topical Symposium on Combined Optical-Microwave Earth and Atmospheric Sensing (Institute of Electrical and Electronics Engineers, New York, 1995), 141–144.
[CrossRef]

Plotkin, H.

Rallison, R. D.

Ramon-Izquierdo, L.

Sargoytchev, S.

Schwemmer, G. K.

Scwar, M. J. R.

M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
[CrossRef]

She, C.-Y.

Sica, R. J.

Singh, U. N.

Sparrow, C. T.

St. Peters, R. L.

Thomas, L.

Vaughan, G.

Walrafen, G. E.

Wareing, D. P.

Weinberg, F. J.

M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
[CrossRef]

Weiss, V.

Weitkamp, C.

Whiteman, D. N.

Wright, R. W. H.

G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

Zeyn, J.

Appl. Opt. (7)

Appl. Spectrosc. (1)

Geophys. Res. Lett. (1)

A. Hauchecorne, M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

D. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1971).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

P. Keckhut, A. Hauchecorne, M. L. Chanin, “A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

G. S. Kent, R. W. H. Wright, “A review of laser radar measurements of atmospheric properties,” J. Atmos. Terr. Phys. 32, 917–943 (1970).
[CrossRef]

J. Geophys. Res. (2)

T. Leblanc, I. S. McDermid, A. Hauchecorne, P. Keckhut, “Evaluation of optimization of lidar temperature analysis algorithms using simulated data,” J. Geophys. Res. 103, 6177–6187 (1998).
[CrossRef]

A. E. Hedin, “Extension of the MSIS thermosphere model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

J. Mod. Opt. (1)

I. D. Ivanova, L. L. Gurdev, V. M. Mitev, “Lidar technique for simultaneous temperature and pressure measurement based on rotational Raman scattering,” J. Mod. Opt. 40, 367–371 (1993).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Nature (London) (1)

M. J. R. Scwar, T. P. Pandya, F. J. Weinberg, “Point holograms as optical elements,” Nature (London) 215, 239–241 (1967).
[CrossRef]

Opt. Lett. (3)

Other (8)

G. Hertzberg, Spectra of Diatomic Molecules, 2nd ed., Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1989), pp. 124–125.

G. I. Greisukh, S. T. Bobrov, S. A. Stepanov, eds., Optics of Diffractive and Gradient-Index Elements and Systems, Vol. PM42 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1997).

γ2 of Ref. 3 is for an excitation wavelength of 488 nm. Because this value is common to all of the nitrogen RRS lines, the precise value is not necessary to determine the temperature of our scheme. Thus we used the quoted value for 488 nm.

The equation for the transmission of the atmosphere is based on a numerical fit to a low-aerosol content, mid-latitude, springtime lowtran atmosphere at the laser wavelength.

The overall optical efficiency value was estimated from the product of the efficiencies for the telescope fiber coupling (90%), the HOE itself (35%), the coupling into the individual fibers (90%), and the PMTs (10%).

For the Rayleigh model, the mass spectrometer incoherent scatter (MSIS-E-90) model atmosphere was used instead of the International Civil Aviation Organization standard used for the Raman model. The numbers were generated with on-line software available at http://nssdc.gsfc.nasa.gov/space/model/atmos/msise.html and based on Ref. 27.

J. K. Brasseur, G. Andersen, P. A. T. Haris, R. J. Knize, “Daytime holographic Raman lidar system,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 13–21 (2000).
[CrossRef]

P. A. T. Haris, C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the Second Topical Symposium on Combined Optical-Microwave Earth and Atmospheric Sensing (Institute of Electrical and Electronics Engineers, New York, 1995), 141–144.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic lidar system. A laser beam is expanded, collimated, and directed into the atmosphere. The return light is collected by a transport fiber at the focus of the telescope. The light exiting the fiber is collimated and passed through the HOE to isolate RRS and Rayleigh light into individual fibers for photon counting in photomultiplier tubes (PMTs).

Fig. 2
Fig. 2

(a) Recording. The hologram is recorded between a divergent beam (from the spatial filter, s.f.) perpendicular to the plate and a plane-wave reference beam incident from an angle. (b) Reconstruction. The phase-conjugate reference beam at wavelength λ2 will focus at a different spatial location relative to the recording wavelength (λ1).

Fig. 3
Fig. 3

Fiber positioning. The fibers are placed along an angled focal plane to collect the focused light at each RRS line. Shown here are the fibers for the J = 20, 16, and 6 RRS lines, along with another for the Rayleigh line (left to right).

Fig. 4
Fig. 4

RRS spectrum. This shows a plot of the nitrogen, anti-Stokes RRS spectrum when we scanned a 50-µm multimode fiber along the focal plane of the HOE. The excitation laser (532 nm) was directed into a nitrogen cell at 10 atm.

Fig. 5
Fig. 5

Scattered light. The plot of the relative power scattered into a 50-µm multimode fiber along the focal plane of the HOE illuminated by the recording laser (λ = 532 nm). The secondary peak near 530 nm results from a front backreflection within the hologram.

Fig. 6
Fig. 6

Predicted rotational Raman spectrum. A plot of the 250 K, RRS anti-Stokes backscattered cross section (σ b ) for both O2 (dashed lines) and N2 (solid lines) at an excitation wavelength of 532.075 nm. The N2 lines at J = 6, 16, and 20 are indicated.

Fig. 7
Fig. 7

Raman lidar. This plot shows the error in Raman temperature with altitude.

Fig. 8
Fig. 8

Rayleigh lidar. This plot shows the error in Rayleigh temperature with altitude.

Tables (1)

Tables Icon

Table 1 Summary of Molecular Constants for N2 and O2

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f2=λ1λ2 f1.
sinϕ2-ϕ1=1-λ1/λ2sin ϕ1.
σb=112π445 ωr4γ2FJbJ-J,
ωr=ω0+2B2J-1-4D02J3-3J2+3J-1
FJgJ2J+1exp-EJ/kT2I+12kT/2hcB0,
bJ-J=3JJ-122J+12J-1,
EJ=JJ+1hcB0-D0hcJ2J+12;
PC=κnNεσbAητ2Δzz2,
Sz=NnβrΔzA4πz2 ητ2,
Tzi=1ρziρtopTtop+MΔzkBziztop-1 ρzi+Δz2gzi+Δz2,
ρ=NmaNA, g=GMEz+RE2,

Metrics