Abstract

Biodeteriogens are an important cause of the weathering of a monument, particularly those made of stone, and their detection at an early stage of development helps to protect the monument from deterioration. Frequent mapping of biodeteriogen accumulation is therefore highly necessary. The use of fluorescence lidar for this purpose was introduced in 1995 and has been developed in subsequent years. Three main aspects emerged during this research: the possibility of discriminating between different biodeteriogen strains, the minimum detectable quantity of biodeteriogens, and the control of the efficiency of biocide treatments. We describe the results of a laboratory experiment devoted to clarifying these three aspects of biodeteriogen monitoring by means of fluorescence lidar.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
    [CrossRef]
  2. D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
    [CrossRef]
  3. H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).
  4. R. M. Measures, M. Bristow, “The development of a laser fluorosensor for remote environmental probing,” Can. Aeron. Space J. 17, 421–422 (1971).
  5. J. F. Fantasia, T. M. Hard, H. C. Ingrao, “Investigation of oil fluorescence as a technique for remote sensing of oil spills,” Report DOT-TSC-USCG-71-7 (Transportation Systems Center, Department of Transportation, Cambridge, Mass., 1971).
  6. R. M. Measures, Laser Remote Chemical Analysis (Wiley Interscience, New York, 1988).
  7. G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).
  8. A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
    [CrossRef]
  9. G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.
  10. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
    [CrossRef]
  11. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
    [CrossRef]
  12. V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
    [CrossRef]
  13. G. Cecchi, L. Pantani, “Vegetation monitoring by means of spectral resolved fluorescence lidar,” in Physical Measurement and Signatures in Remote Sensing, SP-319 (European Space Agency, Paris, 1991), pp. 687–689.
  14. M. Bertrand, B. Schoefs, “Working with photosynthetic pigments: problems and precautions,” in Handbook of Photosynthesis, M. Pessarakli, ed. (Marcel Dekker, New York, 1997).
  15. P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Oxford, 1987).
  16. G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).
  17. Algophase Instructions and Specifications, product enclosure (Phase Company, Firenze, 1999).
  18. K. V. Mardia, J. T. Kent, Multivariate Analisys (Academic, London, 1979).
  19. D. Lognoli, “La fluorescenza indotta da laser e la sua applicazione al telerilevamento lidar dei monumenti lapidei,” Tesi di Laurea in Fisica (Università di Firenze, Firenze, 1999).

1995

P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
[CrossRef]

1992

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

1971

R. M. Measures, M. Bristow, “The development of a laser fluorosensor for remote environmental probing,” Can. Aeron. Space J. 17, 421–422 (1971).

Accolla, P.

P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
[CrossRef]

Agati, G.

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

Bazzani, M.

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

Bertrand, M.

M. Bertrand, B. Schoefs, “Working with photosynthetic pigments: problems and precautions,” in Handbook of Photosynthesis, M. Pessarakli, ed. (Marcel Dekker, New York, 1997).

Bosco, M.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Breschi, B.

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

Bristow, M.

R. M. Measures, M. Bristow, “The development of a laser fluorosensor for remote environmental probing,” Can. Aeron. Space J. 17, 421–422 (1971).

Caneva, G.

G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).

Cecchi, G.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

G. Cecchi, L. Pantani, “Vegetation monitoring by means of spectral resolved fluorescence lidar,” in Physical Measurement and Signatures in Remote Sensing, SP-319 (European Space Agency, Paris, 1991), pp. 687–689.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Chiari, R.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

Edner, H.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Falkowski, P. G.

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Oxford, 1987).

Fantasia, J. F.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, “Investigation of oil fluorescence as a technique for remote sensing of oil spills,” Report DOT-TSC-USCG-71-7 (Transportation Systems Center, Department of Transportation, Cambridge, Mass., 1971).

Hard, T. M.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, “Investigation of oil fluorescence as a technique for remote sensing of oil spills,” Report DOT-TSC-USCG-71-7 (Transportation Systems Center, Department of Transportation, Cambridge, Mass., 1971).

Ingrao, H. C.

J. F. Fantasia, T. M. Hard, H. C. Ingrao, “Investigation of oil fluorescence as a technique for remote sensing of oil spills,” Report DOT-TSC-USCG-71-7 (Transportation Systems Center, Department of Transportation, Cambridge, Mass., 1971).

Johansson, T.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Kent, J. T.

K. V. Mardia, J. T. Kent, Multivariate Analisys (Academic, London, 1979).

Kliffen, C.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Lamenti, G.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Lang, M.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).

Lichtenthaler, H. K.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).

Lognoli, D.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

D. Lognoli, “La fluorescenza indotta da laser e la sua applicazione al telerilevamento lidar dei monumenti lapidei,” Tesi di Laurea in Fisica (Università di Firenze, Firenze, 1999).

Mardia, K. V.

K. V. Mardia, J. T. Kent, Multivariate Analisys (Academic, London, 1979).

Mazzinghi, P.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

Measures, R. M.

R. M. Measures, M. Bristow, “The development of a laser fluorosensor for remote environmental probing,” Can. Aeron. Space J. 17, 421–422 (1971).

R. M. Measures, Laser Remote Chemical Analysis (Wiley Interscience, New York, 1988).

Nugari, M. P.

G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).

Pantani, L.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

G. Cecchi, L. Pantani, “Vegetation monitoring by means of spectral resolved fluorescence lidar,” in Physical Measurement and Signatures in Remote Sensing, SP-319 (European Space Agency, Paris, 1991), pp. 687–689.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Pinna, D.

G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).

Radicati, B.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Raimondi, V.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

Raven, J. A.

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Oxford, 1987).

Romoli, M.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Rosema, A.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Salvadori, O.

G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).

Schoefs, B.

M. Bertrand, B. Schoefs, “Working with photosynthetic pigments: problems and precautions,” in Handbook of Photosynthesis, M. Pessarakli, ed. (Marcel Dekker, New York, 1997).

Settesoldi, L.

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

Stober, F. T.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).

Sundner, B.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Svanberg, S.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Tiano, P.

P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Tirelli, D.

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Tomaselli, L.

P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

Valmori, G.

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

Van Kooten, O.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Weibring, P. K.

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

Can. Aeron. Space J.

R. M. Measures, M. Bristow, “The development of a laser fluorosensor for remote environmental probing,” Can. Aeron. Space J. 17, 421–422 (1971).

EARSeL Adv. Remote Sens.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sens. 1, 20–32 (1992).

G. Cecchi, L. Pantani, B. Breschi, D. Tirelli, G. Valmori, “FLIDAR: a multipurpose fluorosensor-spectrometer,” EARSeL Adv. Remote Sens. 1, 72–78 (1992).

Int. J. Remote Sens.

A. Rosema, G. Cecchi, L. Pantani, B. Radicati, M. Romoli, P. Mazzinghi, O. Van Kooten, C. Kliffen, “Monitoring photosynthetic activity and ozone stress by laser induced fluorescence in trees,” Int. J. Remote Sens. 13, 737–751 (1992).
[CrossRef]

Microbiol. Ecol.

P. Tiano, P. Accolla, L. Tomaselli, “Phototrophic biodeteriogens on lithoid surfaces: an ecological study,” Microbiol. Ecol. 29, 299–309 (1995).
[CrossRef]

Other

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, L. Tomaselli, “Lidar remote sensing of stone cultural heritage: detection and characterization of biodeteriogens,” in Remote Sensing for Earth Science, Ocean, and Sea Ice Applications, G. Cecchi, E. T. Engman, E. Zilioli, eds., Proc. SPIE3868, 339–346 (1999).
[CrossRef]

J. F. Fantasia, T. M. Hard, H. C. Ingrao, “Investigation of oil fluorescence as a technique for remote sensing of oil spills,” Report DOT-TSC-USCG-71-7 (Transportation Systems Center, Department of Transportation, Cambridge, Mass., 1971).

R. M. Measures, Laser Remote Chemical Analysis (Wiley Interscience, New York, 1988).

G. Agati, M. Bazzani, G. Cecchi, P. Mazzinghi, L. Pantani, V. Raimondi, L. Settesoldi, “Remote sensing of Posidonia Oceanica by laser induced fluorescence,” in IGARSS’95 Quantitative Remote Sensing for Science and Applications, (IEEE Geoscience and Remote Sensing Society, Seabrook, Tex. 77586, 1995), Vol. 3, pp. 1732–1734.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens in cultural heritage studies,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning, and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–171 (1996).
[CrossRef]

V. Raimondi, P. K. Weibring, G. Cecchi, H. Edner, T. Johansson, L. Pantani, B. Sundner, S. Svanberg, “Fluorescence imaging of historical buildings by lidar remote sensing,” in Earth Surface Remote Sensing II, G. Cecchi, E. Zilioli, eds., Proc. SPIE3496, 15–20 (1998).
[CrossRef]

G. Cecchi, L. Pantani, “Vegetation monitoring by means of spectral resolved fluorescence lidar,” in Physical Measurement and Signatures in Remote Sensing, SP-319 (European Space Agency, Paris, 1991), pp. 687–689.

M. Bertrand, B. Schoefs, “Working with photosynthetic pigments: problems and precautions,” in Handbook of Photosynthesis, M. Pessarakli, ed. (Marcel Dekker, New York, 1997).

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Oxford, 1987).

G. Caneva, M. P. Nugari, D. Pinna, O. Salvadori, Il Controllo del Degrado Biologico (Nardini Editore, Firenze, 1996).

Algophase Instructions and Specifications, product enclosure (Phase Company, Firenze, 1999).

K. V. Mardia, J. T. Kent, Multivariate Analisys (Academic, London, 1979).

D. Lognoli, “La fluorescenza indotta da laser e la sua applicazione al telerilevamento lidar dei monumenti lapidei,” Tesi di Laurea in Fisica (Università di Firenze, Firenze, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Diagram of the laboratory setup.

Fig. 2
Fig. 2

Spectra of a green alga (Coccomyxa minor, dotted curve) and a cyanobacterium (Chroococcidiopsis kashayi, continuous curve).

Fig. 3
Fig. 3

Fluorescence spectra of a marble slab (continuous curve) and a slab inoculated with green alga, Coccomyxa minor, at 102-cell/cm2 density (dashed curve).

Fig. 4
Fig. 4

Fluorescence spectra of marble slabs inoculated with the green alga, Coccomyxa minor, at 102 cell/cm2 (continuous curve), 103 cell/cm2 (dotted curve), 104 cell/cm2 (dashed curve), and 105 cell/cm2 (dot-dash curve).

Fig. 5
Fig. 5

Fluorescence spectra of a marble slab (continuous curve) and of a slab inoculated with the cyanobacterium, Chroococcidiopsis kashayi, to a density of 105 cell/cm2 (dotted curve).

Fig. 6
Fig. 6

Ratio between the area of the spectra in the blue range (390–480 nm) and in the red range (640–730 nm). The values represent the average of all the slabs inoculated with the same cell densities.

Fig. 7
Fig. 7

First principal component of spectra of slabs inoculated with the green alga, Coccomyxa minor, in the 640–790-nm range.

Fig. 8
Fig. 8

Principal components of spectra of the slabs inoculated with the cyanobacterium, Chroococcidiopsis kashayi, over the 600–750-nm range.

Fig. 9
Fig. 9

Spectra of the green alga, Coccomyxa minor, and of the cyanobacterium, Chroococcidiopsis kashayi, in the red spectral range before and after application of the biocide treatment (Metatin n58-10/101). The intensity of the spectra of cyanobacterium is four times the values.

Fig. 10
Fig. 10

Spectra of reference tubes inoculated with Karmex, benzalconium chloride, Algophase, and Metatin n58-10/101.

Fig. 11
Fig. 11

Principal component analysis calculation of the spectra of green alga before and during the biocide treatments.

Fig. 12
Fig. 12

Projection of the green algae spectra on the principal component set: the projection on the third component (score 3) is ten times the value. N corresponds to the phase before application of the biocide treatment. B corresponds to the time immediately after the biocide treatment (Metatin n58-10/101), which is the conventional point zero of the time scale.

Fig. 13
Fig. 13

Projection of the green algae spectra on the principal component set: the projections are normalized to the value of the spectra before the biocide treatments (N). B corresponds to the time immediately after the application of the biocide treatments, which is the conventional point zero of the time scale.

Metrics