Abstract

We report the fabrication and the nonlinear optical properties of Rh-doped BaTiO3 thin films. The films were deposited on SrTiO3 (100) substrates by pulsed-laser deposition. The deposited Rh:BaTiO3 thin films were single phase and c-axis orientation investigated by x-ray diffraction. The films exhibited large nonlinear optical effects, which were determined using Z-scan technique at a wavelength of 532 nm with a laser duration of 10 ns. The real and imaginary parts of the third-order nonlinear susceptibility χ(3) were 5.71 × 10-7 esu and 9.59 × 10-8 esu, respectively. The value of Reχ(3) of Rh:BaTiO3 films is much larger than those of several representative nonlinear optical thin films. The results show that Rh:BaTiO3 thin films have great potential applications for nonlinear optical devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription