Abstract

We present the measurements of hemispherical elastic scattering of light guided by different modes of a planar LiNbO3 waveguide. It is shown that the fundamental and the lowest-order modes are more sensitive to the scattering properties of the air-core interface, whereas higher-order modes are more sensitive to the optical inhomogeneities of the core-substrate interface. We also demonstrate that because of static polarization of LiNbO3 crystal, the air-core interface is sensitive to the presence of dust particles in air, which causes a change in the scattered light based on time of observation. This sensitivity could be used to elaborate compact sensors of air contamination.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  2. J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Press, Bellingham, Wash., 1995).
    [CrossRef]
  3. V. A. Sterligov, “Angle-resolved light scattering from semiconductors,” Phys. Status Solidi A 170, 443–450 (1998).
    [CrossRef]
  4. G. E. Domashev, Yu. M. Shirshov, V. A. Sterligov, Yu. V. Subbota, S. V. Svechnikov, “Atomic structure display of a real silicon surface under light scattering,” Appl. Opt. 34, 2367–2371 (1995).
    [CrossRef] [PubMed]
  5. V. A. Sterligov, Yu. V. Subbota, Yu. M. Shirshov, L. P. Pochekaylova, E. F. Venger, R. V. Konakova, I. Yu. Ilyin, “Elastic laser light scattering by GaAs surfaces,” Appl. Opt. 38, 2666–2676 (1999).
    [CrossRef]
  6. V. A. Sterligov, P. Cheyssac, S. I. Lysenko, R. Kofman, “Elastic scattering of surface electromagnetic waves by 1D surface relief,” Opt. Commun.177, 1–8 (2000), http://www.elsevier.nl/inca/publications/store/5/0/5/7/1/1/ .
  7. T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
    [CrossRef]
  8. A. Sentenac, J.-J. Greffet, “Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study,” Waves Random Media 5, 145–155 (1995).
    [CrossRef]
  9. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
    [CrossRef]
  10. Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron. 2, 187–196 (1996).
    [CrossRef]
  11. Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
    [CrossRef] [PubMed]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), pp. 8–14.
  13. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
    [CrossRef] [PubMed]
  14. A. Rauber, Chemistry and Physics of Lithium Niobate (North-Holland, Amsterdam, 1978).
  15. E. L. Church, P. Z. Takacs, “Subsurface and volume scattering from smooth surfaces,” in Scatter from Optical Components, J. C. Stover, ed., Proc. SPIE1165, 31–41 (1989).
    [CrossRef]

1999 (1)

1998 (1)

V. A. Sterligov, “Angle-resolved light scattering from semiconductors,” Phys. Status Solidi A 170, 443–450 (1998).
[CrossRef]

1997 (1)

T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
[CrossRef]

1996 (2)

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

1995 (2)

A. Sentenac, J.-J. Greffet, “Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study,” Waves Random Media 5, 145–155 (1995).
[CrossRef]

G. E. Domashev, Yu. M. Shirshov, V. A. Sterligov, Yu. V. Subbota, S. V. Svechnikov, “Atomic structure display of a real silicon surface under light scattering,” Appl. Opt. 34, 2367–2371 (1995).
[CrossRef] [PubMed]

1971 (1)

1969 (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

Baldi, P.

Bennett, J. M.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

Church, E. L.

E. L. Church, P. Z. Takacs, “Subsurface and volume scattering from smooth surfaces,” in Scatter from Optical Components, J. C. Stover, ed., Proc. SPIE1165, 31–41 (1989).
[CrossRef]

De Micheli, M. P.

Domashev, G. E.

Fedorov, V. A.

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Greffet, J.-J.

A. Sentenac, J.-J. Greffet, “Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study,” Waves Random Media 5, 145–155 (1995).
[CrossRef]

Hadi, K. El

Ilyin, I. Yu.

Kawanishi, T.

T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
[CrossRef]

Konakova, R. V.

Korkishko, Yu. N.

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

Leycuras, A.

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), pp. 8–14.

Mattsson, L.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

Ogura, H.

T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
[CrossRef]

Pochekaylova, L. P.

Rauber, A.

A. Rauber, Chemistry and Physics of Lithium Niobate (North-Holland, Amsterdam, 1978).

Sentenac, A.

A. Sentenac, J.-J. Greffet, “Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study,” Waves Random Media 5, 145–155 (1995).
[CrossRef]

Shirshov, Yu. M.

Sterligov, V. A.

Stover, J. C.

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Press, Bellingham, Wash., 1995).
[CrossRef]

Subbota, Yu. V.

Svechnikov, S. V.

Takacs, P. Z.

E. L. Church, P. Z. Takacs, “Subsurface and volume scattering from smooth surfaces,” in Scatter from Optical Components, J. C. Stover, ed., Proc. SPIE1165, 31–41 (1989).
[CrossRef]

Tien, P. K.

Venger, E. F.

Wang, Z. L.

T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Phys. Status Solidi A (1)

V. A. Sterligov, “Angle-resolved light scattering from semiconductors,” Phys. Status Solidi A 170, 443–450 (1998).
[CrossRef]

Waves Random Media (2)

T. Kawanishi, H. Ogura, Z. L. Wang, “Scattering of an electromagnetic wave from planar waveguide structure with a slightly 2D random surface,” Waves Random Media 7, 35–64 (1997).
[CrossRef]

A. Sentenac, J.-J. Greffet, “Scattering by 2D particles deposited on a dielectric planar waveguide: a near-field and far-field study,” Waves Random Media 5, 145–155 (1995).
[CrossRef]

Other (6)

V. A. Sterligov, P. Cheyssac, S. I. Lysenko, R. Kofman, “Elastic scattering of surface electromagnetic waves by 1D surface relief,” Opt. Commun.177, 1–8 (2000), http://www.elsevier.nl/inca/publications/store/5/0/5/7/1/1/ .

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Press, Bellingham, Wash., 1995).
[CrossRef]

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), pp. 8–14.

A. Rauber, Chemistry and Physics of Lithium Niobate (North-Holland, Amsterdam, 1978).

E. L. Church, P. Z. Takacs, “Subsurface and volume scattering from smooth surfaces,” in Scatter from Optical Components, J. C. Stover, ed., Proc. SPIE1165, 31–41 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the optical setup; see text for details.

Fig. 2
Fig. 2

Spatial distribution of the intensity of the different modes near (a) the core-substrate interface, d = d 0, and (b) the air-core interface, d = 0. Curves are labeled by mode number.

Fig. 3
Fig. 3

Spatial frequency dependence of (a) BSDF and (b) BSDF+ and BSDFPW (scattering of the He-Ne laser beam). The curves are labeled by mode number and by 632.8 for the He-Ne laser.

Fig. 4
Fig. 4

Spatial frequency and time dependence of the ARS for the fundamental mode. The curves in (a) are labeled by the time of observation (measured in minutes) after we cleaned the surface of the waveguide with ethanol. The curves in (b) are labeled by the corresponding value of the spatial frequency.

Fig. 5
Fig. 5

Schematic presentation of the observed area in the spatial frequency plane for surface wave scattering.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Hd=A exp-δd  for d  0, Hd=Acos kd-n12/n32δ/ksin kd for 0  d  d0, Hd=Acos d0k-n12/n32×δ/ksin d0kexpγd+d0for d  d0,
tankd=n12kn32γ+n22δ/n22n32k2-n14γδ.
fx=1λn sin α+sin θ cos φ,fy=1λsin θ sin φ.
f=fx2+fy2, fx=f cos β, fy=f sin β.
φ=arctanfλ sin βfλ cos β-n sin α,θ=arcsinfλ sin βsin φ.
θ=arcsinλf-n sin αcos φ.

Metrics