Abstract

An intrinsic multiplexed laser interferometer is presented that allows for the simultaneous detection of acoustic waves by an array of fiber-optic sensors. The phase-modulated signals from each sensor are demodulated by use of an adaptive two-wave mixing setup. The light from each sensing fiber in the array is mixed with a reference beam in a single photorefractive crystal (PRC), and the output beams from the PRC are imaged onto separate photodetectors to create a multiplexed two-wave mixing (MTWM) system. The sensing fibers are embedded in graphite-epoxy composite panels, and detection of both acoustic emission and ultrasonic signals in these materials is demonstrated. The intrinsic MTWM system is an effective tool for the simultaneous demodulation of signals from a large fiber sensor array. Also, the adaptive nature of the MTWM setup obviates the need for active stabilization against ambient noise.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, ed., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, New York, 1991).
  2. R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
    [CrossRef]
  3. K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
    [CrossRef]
  4. K. Liu, R. M. Measures, “Detection of high-frequency elastic waves with embedded ordinary single-mode fibers,” in Fiber Optic and Laser Sensors IX, E. Udd, R. P. DePaula, eds., Proc.1584, 226–234 (1991).
    [CrossRef]
  5. J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
    [CrossRef]
  6. E. Udd, ed., Fiber Optic Smart Structures (Wiley, New York, 1995).
  7. S. G. Pierce, W. R. Philp, A. Gachagan, A. McNab, G. Hayward, B. Culshaw, “Surface-bonded and embedded optical fibers as ultrasonic sensors,” Appl. Opt. 35, 5191–5197 (1996).
    [CrossRef] [PubMed]
  8. J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).
  9. N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
    [CrossRef]
  10. J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
    [CrossRef]
  11. P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
    [CrossRef]
  12. A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
    [CrossRef]
  13. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).
  14. M. P. Petrov, S. I. Stepanov, A. K. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  15. T. Murray, S. Krishnaswamy, “Multiplexed interferometer for ultrasonic imaging applications,” Opt. Eng. 40, 1321–1328 (2001).
    [CrossRef]
  16. L. Flax, J. H. Cole, R. P. Depaula, J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72, 1159–1162 (1982).
    [CrossRef]
  17. J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
    [CrossRef]
  18. P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
    [CrossRef]

2001 (1)

T. Murray, S. Krishnaswamy, “Multiplexed interferometer for ultrasonic imaging applications,” Opt. Eng. 40, 1321–1328 (2001).
[CrossRef]

2000 (1)

P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
[CrossRef]

1999 (1)

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

1997 (2)

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
[CrossRef]

1994 (1)

A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

1990 (2)

K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
[CrossRef]

1983 (1)

R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
[CrossRef]

1982 (1)

Achenbach, J. D.

P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
[CrossRef]

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
[CrossRef]

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
[CrossRef]

Bennion, I.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Blouin, A.

A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

Bucaro, J. A.

R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
[CrossRef]

L. Flax, J. H. Cole, R. P. Depaula, J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72, 1159–1162 (1982).
[CrossRef]

Chan, H. L. W.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

Chen, J.-Y.

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

Chiang, K. S.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

Cole, J. H.

R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
[CrossRef]

L. Flax, J. H. Cole, R. P. Depaula, J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72, 1159–1162 (1982).
[CrossRef]

Culshaw, B.

Daniel, I. M.

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

De Paula, R. P.

R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
[CrossRef]

Depaula, R. P.

Dorighi, J.

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
[CrossRef]

Fisher, N. E.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Flax, L.

Fomitchov, P.

P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
[CrossRef]

Fomitchov, P. A.

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Gachagan, A.

Gardner, J. L.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

Gavrilov, L. P.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).

Hand, J. W.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Hayward, G.

Hoa, S. V.

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

Jackson, D. A.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Jen, C. K.

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

Khomenko, A. K.

M. P. Petrov, S. I. Stepanov, A. K. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Kim, Y. K.

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Krishnaswamy, S.

T. Murray, S. Krishnaswamy, “Multiplexed interferometer for ultrasonic imaging applications,” Opt. Eng. 40, 1321–1328 (2001).
[CrossRef]

P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
[CrossRef]

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
[CrossRef]

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Kromine, A.

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Lee, C. E.

J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
[CrossRef]

Liu, K.

K. Liu, R. M. Measures, “Detection of high-frequency elastic waves with embedded ordinary single-mode fibers,” in Fiber Optic and Laser Sensors IX, E. Udd, R. P. DePaula, eds., Proc.1584, 226–234 (1991).
[CrossRef]

McNab, A.

Measures, R. M.

K. Liu, R. M. Measures, “Detection of high-frequency elastic waves with embedded ordinary single-mode fibers,” in Fiber Optic and Laser Sensors IX, E. Udd, R. P. DePaula, eds., Proc.1584, 226–234 (1991).
[CrossRef]

Monchalin, J. P.

A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

Murray, T.

T. Murray, S. Krishnaswamy, “Multiplexed interferometer for ultrasonic imaging applications,” Opt. Eng. 40, 1321–1328 (2001).
[CrossRef]

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, A. K. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Philp, W. R.

Pierce, S. G.

Solymar, L.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, A. K. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Surowiec, J.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Tailor, H.

J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
[CrossRef]

Wang, H.

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

Webb, D. J.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).

Zhang, L.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

IEEE Trans. Ultrason. Ferroelecter. Freq. Control (2)

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 42, 820–824 (1995).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. Tailor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelecter. Freq. Control 37, 302–305 (1990).
[CrossRef]

J. Comp. Mater. (1)

J.-Y. Chen, S. V. Hoa, C. K. Jen, H. Wang, “Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites,” J. Comp. Mater. 33, 1860–1881 (1999).
[CrossRef]

J. Lightwave Technol. (2)

R. P. De Paula, J. H. Cole, J. A. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. LT-1, 390–393 (1983).
[CrossRef]

K. S. Chiang, H. L. W. Chan, J. L. Gardner, “Detection of high-frequency ultrasound with a polarization-maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. P. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
[CrossRef]

Opt. Eng. (2)

T. Murray, S. Krishnaswamy, “Multiplexed interferometer for ultrasonic imaging applications,” Opt. Eng. 40, 1321–1328 (2001).
[CrossRef]

P. Fomitchov, S. Krishnaswamy, J. D. Achenbach, “Extrinsic and intrinsic fiber-optic Sagnac ultrasound sensors,” Opt. Eng. 39, 1972–1984 (2000).
[CrossRef]

Res. Nondestruct. Eval. (1)

J. Dorighi, S. Krishnaswamy, J. D. Achenbach, “A fiber optic ultrasonic system to monitor the cure of epoxy,” Res. Nondestruct. Eval. 9, 13–24 (1997).

Other (6)

E. Udd, ed., Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, New York, 1991).

K. Liu, R. M. Measures, “Detection of high-frequency elastic waves with embedded ordinary single-mode fibers,” in Fiber Optic and Laser Sensors IX, E. Udd, R. P. DePaula, eds., Proc.1584, 226–234 (1991).
[CrossRef]

E. Udd, ed., Fiber Optic Smart Structures (Wiley, New York, 1995).

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).

M. P. Petrov, S. I. Stepanov, A. K. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

P. A. Fomitchov, Y. K. Kim, A. Kromine, S. Krishnaswamy, J. D. Achenbach, I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE4335, 323–329 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical schematic of laser source and typical arrangement of sensing fibers. (b) Optical schematic of the three-channel MTWM demodulator.

Fig. 2
Fig. 2

Wave-mixing configuration used in a PRC: All sampling beams lie in the horizontal plane; the reference beam is 5° off the horizontal plane with primary grating vectors between the reference beam and each signal beam, all of which are parallel to the applied field direction.

Fig. 3
Fig. 3

(a) Experimental arrangement used to detect bulk ultrasonic waves in a composite sandwich structure, (b) detected ultrasonic signals for all three channels. PZT, piezoelectric transducer.

Fig. 4
Fig. 4

(a) Experimental setup for three-channel interferometric detection of acoustic events in a composite smart structure. (b) Signals detected by the sensing elements, showing the acoustic waves from mechanical impact damage of the structure.

Metrics