Abstract

A method of analytical differentiation is developed for processing differential absorption lidar (DIAL) data. The method is based on simple analytical transformation of the DIAL on and off signal ratio. The derivatives consequently are found for either individual data points or local zones of the measurement range. The method makes possible the separation of local zones of interest and the separate investigation of these. The smoothing level is established by the selected value of the exponent in a transformation formula rather than by the selection of the resolution range. The method does not require the calculation of local signal increments. This reduces significantly the high-frequency noise in the measured concentration. The method is general and can be used for different experimental data, including inelastic (Raman) lidar data. The processing technique is practical and does not require a determination of the solution for a large set of algebraic equations. It is based on the simple repetition of the same type of calculations with different constants. The method can easily be implemented for practical computations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription