Abstract

A direct-detection Doppler lidar system is demonstrated that uses a CCD as a detector for the first time to our knowledge. The ability to use this linear device with the circular output from a Fabry-Perot etalon comes from use of a circle-to-line converter [Appl. Opt. 29, 1482 (1990)]. In addition to the gains in quantum efficiency obtained through use of this detector, the lidar system described in this paper also has the capability to measure winds from aerosol and molecular backscatter simultaneously in two separate channels by directing the light reflected from one channel into the other. Early measurements with this system are presented; it is shown that, although accurate aerosol wind measurements are easily obtained, molecular measurements require a carefully calibrated inverse model and special hardware to derive accurate wind measurements with this channel.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Rao, S. J. Holmes, R. K. Anderson, J. S. Winston, P. E. Lehr, eds., Weather Satellites: Systems, Data, and Environmental Applications (American Meteorological Society, Boston, Mass., 1990).
  2. D. Atlas, C. L. Korb, “Weather and climate needs for lidar observations from space and concepts for their realizations,” Bull. Am. Meteorol. Soc. 62, 1270–1285 (1981).
    [CrossRef]
  3. A. V. Jelalian, R. M. Huffaker, “Application of laser Doppler techniques to turbulent velocity measurement. Part II: Laser Doppler techniques for remote wind velocity measurements,” in Specialist Conference on Molecular Radiation and its Application to Diagnostic Techniques, NASA Tech. Memo. TMX-53711, R. Goulord, ed., (NASA Marshall Space Flight Center, Huntsville, Ala.1967), pp. 345–356.
  4. R. M. Huffaker, D. W. Beran, C. G. Little, “Pulsed coherent lidar systems for airborne and satellite based wind field measurement,” in Seventh Conference on Aerospace and Aeronautical Meteorology and Symposium on Remote Sensing from Satellite (American Meteorological Society, Boston, Mass., 1976), pp. 318–324.
  5. V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2297 (1979).
    [CrossRef] [PubMed]
  6. D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
    [CrossRef] [PubMed]
  7. R. J. Curran, “NASA’s plans to observe the Earth’s atmosphere with lidar,” IEEE Trans. Geosci. Remote Sens. 27, 154–163 (1989).
    [CrossRef]
  8. M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [CrossRef] [PubMed]
  9. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  10. V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
    [CrossRef] [PubMed]
  11. J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
    [CrossRef]
  12. F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
    [CrossRef]
  13. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
  14. R. T. Menzies, “Doppler lidar atmospheric wind sensor: a comparative performance evaluation for global measurement applications from Earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
    [CrossRef]
  15. C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
    [CrossRef]
  16. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique, theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  17. W. R. Skinner, and P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
    [CrossRef]
  18. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
    [CrossRef] [PubMed]
  19. K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  20. M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
    [CrossRef] [PubMed]
  21. T. D. Irgang, “Direct-detection Doppler lidar employing a CCD detector: design and early measurements,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 2000).
  22. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
    [CrossRef] [PubMed]
  23. J. A. McKay, “Single and tandem Fabry-Perot etalons as solar background filters for lidar,” Appl. Opt. 38, 5851–5858 (1999).
    [CrossRef]
  24. W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29, 478–484 (1927).
    [CrossRef]
  25. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1989).
  26. I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
    [CrossRef]
  27. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
    [CrossRef]
  28. P. B. Hays, C. A. Nardell, “The GroundWinds New Hampshire instrument and the LIDAR-Fest 2000 campaign,” presented at the SPIE Forty-Sixth International Symposium on Optical Science and Technology, San Diego, Calif., 29 July–3 Aug. 2001.

1999 (1)

1998 (1)

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

1997 (3)

1996 (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).

1995 (1)

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1993 (2)

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

1992 (2)

1990 (2)

1989 (2)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

R. J. Curran, “NASA’s plans to observe the Earth’s atmosphere with lidar,” IEEE Trans. Geosci. Remote Sens. 27, 154–163 (1989).
[CrossRef]

1986 (1)

1985 (1)

1981 (1)

D. Atlas, C. L. Korb, “Weather and climate needs for lidar observations from space and concepts for their realizations,” Bull. Am. Meteorol. Soc. 62, 1270–1285 (1981).
[CrossRef]

1980 (1)

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

1979 (1)

1927 (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29, 478–484 (1927).
[CrossRef]

Abreu, V. J.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2297 (1979).
[CrossRef] [PubMed]

Atlas, D.

D. Atlas, C. L. Korb, “Weather and climate needs for lidar observations from space and concepts for their realizations,” Bull. Am. Meteorol. Soc. 62, 1270–1285 (1981).
[CrossRef]

Barnes, J. E.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

Beran, D. W.

R. M. Huffaker, D. W. Beran, C. G. Little, “Pulsed coherent lidar systems for airborne and satellite based wind field measurement,” in Seventh Conference on Aerospace and Aeronautical Meteorology and Symposium on Remote Sensing from Satellite (American Meteorological Society, Boston, Mass., 1976), pp. 318–324.

Bilbro, J. W.

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Curran, R. J.

R. J. Curran, “NASA’s plans to observe the Earth’s atmosphere with lidar,” IEEE Trans. Geosci. Remote Sens. 27, 154–163 (1989).
[CrossRef]

Dobbs, M. E.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Fedor, L.

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

Fischer, K. W.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Freshwater, R. A.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

Garnier, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gell, D. A.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Gentry, B. M.

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).

Hauchecorne, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hays, and P. B.

W. R. Skinner, and P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

Hays, P. B.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

P. B. Hays, C. A. Nardell, “The GroundWinds New Hampshire instrument and the LIDAR-Fest 2000 campaign,” presented at the SPIE Forty-Sixth International Symposium on Optical Science and Technology, San Diego, Calif., 29 July–3 Aug. 2001.

Hill, C.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

Houston, W. V.

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29, 478–484 (1927).
[CrossRef]

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).

A. V. Jelalian, R. M. Huffaker, “Application of laser Doppler techniques to turbulent velocity measurement. Part II: Laser Doppler techniques for remote wind velocity measurements,” in Specialist Conference on Molecular Radiation and its Application to Diagnostic Techniques, NASA Tech. Memo. TMX-53711, R. Goulord, ed., (NASA Marshall Space Flight Center, Huntsville, Ala.1967), pp. 345–356.

R. M. Huffaker, D. W. Beran, C. G. Little, “Pulsed coherent lidar systems for airborne and satellite based wind field measurement,” in Seventh Conference on Aerospace and Aeronautical Meteorology and Symposium on Remote Sensing from Satellite (American Meteorological Society, Boston, Mass., 1976), pp. 318–324.

Irgang, T. D.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

T. D. Irgang, “Direct-detection Doppler lidar employing a CCD detector: design and early measurements,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 2000).

Jelalian, A. V.

A. V. Jelalian, R. M. Huffaker, “Application of laser Doppler techniques to turbulent velocity measurement. Part II: Laser Doppler techniques for remote wind velocity measurements,” in Specialist Conference on Molecular Radiation and its Application to Diagnostic Techniques, NASA Tech. Memo. TMX-53711, R. Goulord, ed., (NASA Marshall Space Flight Center, Huntsville, Ala.1967), pp. 345–356.

Jones, R. L.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

Keller, T. L.

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

Korb, C. L.

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique, theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

D. Atlas, C. L. Korb, “Weather and climate needs for lidar observations from space and concepts for their realizations,” Bull. Am. Meteorol. Soc. 62, 1270–1285 (1981).
[CrossRef]

Levinson, D.

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

Little, C. G.

R. M. Huffaker, D. W. Beran, C. G. Little, “Pulsed coherent lidar systems for airborne and satellite based wind field measurement,” in Seventh Conference on Aerospace and Aeronautical Meteorology and Symposium on Remote Sensing from Satellite (American Meteorological Society, Boston, Mass., 1976), pp. 318–324.

McDermid, I. S.

McGill, M. J.

McKay, J. A.

Menzies, R. T.

Nardell, C. A.

P. B. Hays, C. A. Nardell, “The GroundWinds New Hampshire instrument and the LIDAR-Fest 2000 campaign,” presented at the SPIE Forty-Sixth International Symposium on Optical Science and Technology, San Diego, Calif., 29 July–3 Aug. 2001.

Neiman, P. J.

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Povey, I. M.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

Rahn, L. A.

Ralph, F. M.

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

Rees, D.

Rojas, R.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Sargoytchev, S. I.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Skinner, W. R.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

W. R. Skinner, and P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

South, A. M.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

t’Kint de Roodenbeke, A.

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

Tepley, C. A.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1989).

Weng, C. Y.

Appl. Opt. (10)

V. J. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2297 (1979).
[CrossRef] [PubMed]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef] [PubMed]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

R. T. Menzies, “Doppler lidar atmospheric wind sensor: a comparative performance evaluation for global measurement applications from Earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
[CrossRef]

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique, theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
[CrossRef] [PubMed]

J. A. McKay, “Single and tandem Fabry-Perot etalons as solar background filters for lidar,” Appl. Opt. 38, 5851–5858 (1999).
[CrossRef]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

D. Atlas, C. L. Korb, “Weather and climate needs for lidar observations from space and concepts for their realizations,” Bull. Am. Meteorol. Soc. 62, 1270–1285 (1981).
[CrossRef]

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

R. J. Curran, “NASA’s plans to observe the Earth’s atmosphere with lidar,” IEEE Trans. Geosci. Remote Sens. 27, 154–163 (1989).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

J. Atmos. Sci. (1)

F. M. Ralph, P. J. Neiman, T. L. Keller, D. Levinson, L. Fedor, “Observations, simulations, and analysis of nonstationary trapped lee waves,” J. Atmos. Sci. 54, 1308–1333 (1997).
[CrossRef]

J. Geophys. Res. (2)

I. M. Povey, A. M. South, A. t’Kint de Roodenbeke, C. Hill, R. A. Freshwater, R. L. Jones, “A broadband lidar for the measurement of tropospheric constituent profiles from the ground,” J. Geophys. Res. 103, 3369–3380 (1998).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Opt. Eng. (2)

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

J. W. Bilbro, “Atmospheric laser Doppler velocimetry: an overview,” Opt. Eng. 19, 533–542 (1980).
[CrossRef]

Phys. Rev. (1)

W. V. Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29, 478–484 (1927).
[CrossRef]

Proc. IEEE (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).

Other (7)

W. R. Skinner, and P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994).
[CrossRef]

A. V. Jelalian, R. M. Huffaker, “Application of laser Doppler techniques to turbulent velocity measurement. Part II: Laser Doppler techniques for remote wind velocity measurements,” in Specialist Conference on Molecular Radiation and its Application to Diagnostic Techniques, NASA Tech. Memo. TMX-53711, R. Goulord, ed., (NASA Marshall Space Flight Center, Huntsville, Ala.1967), pp. 345–356.

R. M. Huffaker, D. W. Beran, C. G. Little, “Pulsed coherent lidar systems for airborne and satellite based wind field measurement,” in Seventh Conference on Aerospace and Aeronautical Meteorology and Symposium on Remote Sensing from Satellite (American Meteorological Society, Boston, Mass., 1976), pp. 318–324.

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Hilger, Philadelphia, Pa., 1989).

P. B. Hays, C. A. Nardell, “The GroundWinds New Hampshire instrument and the LIDAR-Fest 2000 campaign,” presented at the SPIE Forty-Sixth International Symposium on Optical Science and Technology, San Diego, Calif., 29 July–3 Aug. 2001.

T. D. Irgang, “Direct-detection Doppler lidar employing a CCD detector: design and early measurements,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 2000).

P. K. Rao, S. J. Holmes, R. K. Anderson, J. S. Winston, P. E. Lehr, eds., Weather Satellites: Systems, Data, and Environmental Applications (American Meteorological Society, Boston, Mass., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

CLIO transform. With the apex on the optic axis, the cone segment maps light along a radial segment into a single spot along the axis of the cone.

Fig. 2
Fig. 2

Complete optical system diagram for the new U of M Doppler lidar instrument. FWHH, full width at half-height.

Fig. 3
Fig. 3

Etalon beam-divider section. The base of each arrow represents the apex of the 90° wedge segment. Light initially passes downward through the aerosol etalon with orientation 1. The reflected light from the aerosol etalon has orientation 2 and is captured by the pickoff mirror and passes through the molecular etalon oriented as in the upperward-pointing arrow next to arrow 2. Light reflected from the molecular etalon has orientation 3 and is also captured and used in this system.

Fig. 4
Fig. 4

CCD collection timing: (a) the charge has just begun to accumulate at the center of the array, (b) the return signal has been obtained over half of the altitude range, (c) the last altitude has been collected for the first shot of the laser, and (d) is then reverse shifted to the starting position for the collection of the second laser pulse.

Fig. 5
Fig. 5

Timing diagram for data collection on three different time scales.

Fig. 6
Fig. 6

Spectrum from 1-km altitude on 7 October 1999 at 1:09 a.m. EDT. The raw data were background subtracted and then divided by the normalization curve (offset -11000 counts from true position for clarity) to produce the final spectrum as shown. The bold segment of the final spectrum curve represents the portion of the curve from which wind measurements are derived.

Fig. 7
Fig. 7

Spectrum from 11:28 p.m. EDT on 6 October 1999. The spectrum was split into molecular and aerosol parts by Eq. (2).

Fig. 8
Fig. 8

Plots showing 10-s lidar wind profiles compared with a rawinsonde launched ∼10 km away. Error bars at each altitude represent ±1σ for all data files in a data set. All times are EDT.

Fig. 9
Fig. 9

Plots showing 3.5-min lidar profiles compared with the balloon. All times are EDT. A 6.24-m/s offset was applied to the lidar soundings.

Fig. 10
Fig. 10

A/M ratio corresponding to the soundings in Figs. 8 and 9.

Fig. 11
Fig. 11

Effect of etalon plate errors on the CLIO-formed spot. Each numbered aperture maps to the region of the wedge indicated. (a) The etalon plates are bowed, so each increasing aperture size maps a fringe slightly offset from the preceding aperture because t increases radially outward. (b) The etalon plates are tilted along the axis of the cone. In this case, each increasing aperture maps a portion of the fringe farther from the cone apex and a portion of the fringe closer to the cone apex because the aperture maps a portion of the etalon with below-nominal plate spacing and a portion of the etalon above-nominal plate spacing. (c) and (d) A tilt of the etalon perpendicular to the axis of the cone is illustrated experimentally. In (c), the etalon is roughly aligned, so the CLIO-formed spots are round. In (d), the plates were misaligned by compression of an etalon post whose position lies on a line perpendicular to the axis of the cone. The result is the slanted fringes shown.

Fig. 12
Fig. 12

(a) Comparison of the forward model with lidar data from a 5-km range on 15 November 1999. The model data were divided by a factor of 22.1 to match the model and data response. (b) Molecular channel spectra from a 9.7- and 11.2-km range (6.9- and 7.9-km altitude).

Tables (2)

Tables Icon

Table 1 Laser Parameters

Tables Icon

Table 2 Lidar Etalon Data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δu=ΔufsrΘr-Θ02π
Mj=CTmin-TmaxC-1

Metrics