P. Xie, I. A. Taj, T. Mishima, “Origin of temporal fluctuation in the photorefractive effect,” J. Opt. Soc. Am. B 18, 479–484 (2001).

[CrossRef]

P. Xie, T. Mishima, “Temporal fluctuation in photorefractive wave mixing,” IEEE J. Quantum Electron. QE-37, 1248–1255 (2001).

P. Xie, I. A. Taj, T. Mishima, “Reducing temporal fluctuation of signal intensity in optical wave mixing,” IEEE J. Quantum Electron. 37, 664–671 (2001).

[CrossRef]

R. L. Honeycutt, “Stochastic Runge-Kutta algorithms. I. White noise,” Phys. Rev. A 45, 600–603 (1992).

[CrossRef]
[PubMed]

M. R. Belic, “Exact solution to the degenerate four-wave mixing in reflection geometry in photorefractive media,” Phys. Rev. A 31, 3169–3174 (1985).

[CrossRef]
[PubMed]

S. I. Stepanov, M. P. Petrov, “Degenerate four-wave mixing via shifted phase holograms in cubic photorefractive crystals,” Opt. Commun. 53, 64–68 (1985).

[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

M. R. Belic, “Exact solution to the degenerate four-wave mixing in reflection geometry in photorefractive media,” Phys. Rev. A 31, 3169–3174 (1985).

[CrossRef]
[PubMed]

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).

H. Kong, C. Lin, A. M. Biernacki, M. Cronin-Golomb, “Photorefractive phase conjugation with orthogonally polarized pumping beams,” Opt. Lett. 13, 324–326 (1988).

[CrossRef]
[PubMed]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

R. L. Honeycutt, “Stochastic Runge-Kutta algorithms. I. White noise,” Phys. Rev. A 45, 600–603 (1992).

[CrossRef]
[PubMed]

P. Xie, I. A. Taj, T. Mishima, “Origin of temporal fluctuation in the photorefractive effect,” J. Opt. Soc. Am. B 18, 479–484 (2001).

[CrossRef]

P. Xie, I. A. Taj, T. Mishima, “Reducing temporal fluctuation of signal intensity in optical wave mixing,” IEEE J. Quantum Electron. 37, 664–671 (2001).

[CrossRef]

P. Xie, T. Mishima, “Temporal fluctuation in photorefractive wave mixing,” IEEE J. Quantum Electron. QE-37, 1248–1255 (2001).

S. I. Stepanov, M. P. Petrov, “Degenerate four-wave mixing via shifted phase holograms in cubic photorefractive crystals,” Opt. Commun. 53, 64–68 (1985).

[CrossRef]

H. Risken, The Fokker-Planck Equation: Method of Solution and Application (Springer-Verlag, Berlin, 1984), pp. 60–62.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

S. I. Stepanov, M. P. Petrov, “Degenerate four-wave mixing via shifted phase holograms in cubic photorefractive crystals,” Opt. Commun. 53, 64–68 (1985).

[CrossRef]

P. Xie, I. A. Taj, T. Mishima, “Reducing temporal fluctuation of signal intensity in optical wave mixing,” IEEE J. Quantum Electron. 37, 664–671 (2001).

[CrossRef]

P. Xie, I. A. Taj, T. Mishima, “Origin of temporal fluctuation in the photorefractive effect,” J. Opt. Soc. Am. B 18, 479–484 (2001).

[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

P. Xie, I. A. Taj, T. Mishima, “Origin of temporal fluctuation in the photorefractive effect,” J. Opt. Soc. Am. B 18, 479–484 (2001).

[CrossRef]

P. Xie, I. A. Taj, T. Mishima, “Reducing temporal fluctuation of signal intensity in optical wave mixing,” IEEE J. Quantum Electron. 37, 664–671 (2001).

[CrossRef]

P. Xie, T. Mishima, “Temporal fluctuation in photorefractive wave mixing,” IEEE J. Quantum Electron. QE-37, 1248–1255 (2001).

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.

P. Xie, I. A. Taj, T. Mishima, “Reducing temporal fluctuation of signal intensity in optical wave mixing,” IEEE J. Quantum Electron. 37, 664–671 (2001).

[CrossRef]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–20 (1984).

[CrossRef]

P. Xie, T. Mishima, “Temporal fluctuation in photorefractive wave mixing,” IEEE J. Quantum Electron. QE-37, 1248–1255 (2001).

S. I. Stepanov, M. P. Petrov, “Degenerate four-wave mixing via shifted phase holograms in cubic photorefractive crystals,” Opt. Commun. 53, 64–68 (1985).

[CrossRef]

R. L. Honeycutt, “Stochastic Runge-Kutta algorithms. I. White noise,” Phys. Rev. A 45, 600–603 (1992).

[CrossRef]
[PubMed]

M. R. Belic, “Exact solution to the degenerate four-wave mixing in reflection geometry in photorefractive media,” Phys. Rev. A 31, 3169–3174 (1985).

[CrossRef]
[PubMed]

H. Risken, The Fokker-Planck Equation: Method of Solution and Application (Springer-Verlag, Berlin, 1984), pp. 60–62.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).

Throughout this paper we maintain a time delay [defined in Eq. (13)] of Δt = 1014τ. The effect of time delay Δt on reduction of efficiency Vfeedback/Vwithout has been discussed in detail in Ref. 1. In general, the smaller the Δt, the smaller the Vfeedback/Vwithout is. For Δt = 1014τ the reduction efficiency Vfeedback/Vwithout changes only slightly when Δt decreases.