Abstract

A passively Q-switched quasi-three-level Nd:YAG laser is intracavity frequency doubled to generate a blue laser. The 473-nm blue laser has a peak power of 37 W and a pulse width of 23 ns at a pumping power of 1.6 W. To model this laser numerically, we developed rate equations by taking into consideration both the quasi-three-level nature of the gain medium and the four-level nature of the saturable absorber. Good agreement was achieved between experimental and simulated results for both the fundamental and the second-harmonic output. The reabsorption loss of the gain medium is estimated under pulsed operation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World 36(1), 133–137 (2000).
  2. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  3. T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.
  4. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
    [CrossRef]
  5. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
    [CrossRef] [PubMed]
  6. D. G. Matthews, R. S. Conroy, B. D. Sinclair, N. MacKinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
    [CrossRef] [PubMed]
  7. P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
    [CrossRef]
  8. I. D. Lindsay, M. Ebrahimzadeh, “Efficient continuous-wave and Q-switched operation of a 946-nm Nd:YAG laser pumped by an injection-locked broad-area diode laser,” Appl. Opt. 37, 3961–3970 (1998).
    [CrossRef]
  9. T. Kellner, F. Heine, G. Huber, S. Kuck, “Passive Q-switching of a diode-pumped 946-nm Nd:YAG with 1.6-W average output power,” Appl. Opt. 37, 7076–7079 (1998).
    [CrossRef]
  10. G. Xiao, M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
    [CrossRef]
  11. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [CrossRef]
  12. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
    [CrossRef]
  13. A. Szabo, R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
    [CrossRef]
  14. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  15. S. M. Shahruz, T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
    [CrossRef]
  16. T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
    [CrossRef]
  17. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
    [CrossRef]
  18. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  19. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
    [CrossRef] [PubMed]
  20. S. L. Huang, F. J. Kao, H. S. Hsieh, C. S. Hsu, “Polarization-dependent periodic pulse oscillation in a diode-laser-pumped and intracavity-frequency-doubled Nd:YVO4 laser,” Appl. Opt. 37, 2397–2401 (1998).
    [CrossRef]
  21. J. Liu, D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
    [CrossRef]
  22. S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
    [CrossRef]

2000 (2)

H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World 36(1), 133–137 (2000).

P. Zeller, P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
[CrossRef]

1999 (6)

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
[CrossRef]

J. Liu, D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

S. M. Shahruz, T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

1998 (3)

1997 (1)

G. Xiao, M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

1996 (1)

1995 (2)

1992 (1)

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
[CrossRef]

1990 (1)

1988 (1)

1987 (1)

T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

1965 (1)

A. Szabo, R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

G. Xiao, M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

Bracikowski, C.

Byer, R. L.

T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Clarkson, W. A.

Conroy, R. S.

Czeranowsky, C.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Ebrahimzadeh, M.

Fan, T. Y.

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
[CrossRef]

T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Halldorsson, T.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

Hanna, D. C.

Harrell, E. M.

Heine, F.

T. Kellner, F. Heine, G. Huber, S. Kuck, “Passive Q-switching of a diode-pumped 946-nm Nd:YAG with 1.6-W average output power,” Appl. Opt. 37, 7076–7079 (1998).
[CrossRef]

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

Hsieh, H. S.

Hsu, C. S.

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

S. L. Huang, F. J. Kao, H. S. Hsieh, C. S. Hsu, “Polarization-dependent periodic pulse oscillation in a diode-laser-pumped and intracavity-frequency-doubled Nd:YVO4 laser,” Appl. Opt. 37, 2397–2401 (1998).
[CrossRef]

Huber, G.

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
[CrossRef]

T. Kellner, F. Heine, G. Huber, S. Kuck, “Passive Q-switching of a diode-pumped 946-nm Nd:YAG with 1.6-W average output power,” Appl. Opt. 37, 7076–7079 (1998).
[CrossRef]

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

James, G. E.

Jones-Bey, H.

H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World 36(1), 133–137 (2000).

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

S. L. Huang, F. J. Kao, H. S. Hsieh, C. S. Hsu, “Polarization-dependent periodic pulse oscillation in a diode-laser-pumped and intracavity-frequency-doubled Nd:YVO4 laser,” Appl. Opt. 37, 2397–2401 (1998).
[CrossRef]

Karlsson, H.

Kazansky, P. G.

Kellner, T.

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
[CrossRef]

T. Kellner, F. Heine, G. Huber, S. Kuck, “Passive Q-switching of a diode-pumped 946-nm Nd:YAG with 1.6-W average output power,” Appl. Opt. 37, 7076–7079 (1998).
[CrossRef]

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

Kim, D.

J. Liu, D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

Koch, R.

Kuck, S.

Laurell, F.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Lindsay, I. D.

Liu, J.

J. Liu, D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

MacKinnon, N.

Mahavaraha, T. A.

S. M. Shahruz, T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
[CrossRef]

Matthews, D. G.

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Ostroumov, V.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

Peuser, P.

Pierrou, M.

Pruneri, V.

Risk, W. P.

Roy, R.

Russell, P. St. J.

Shahruz, S. M.

S. M. Shahruz, T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
[CrossRef]

Sinclair, B. D.

Stein, R. A.

A. Szabo, R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Szabo, A.

A. Szabo, R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Tashiro, H.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Wiesenfeld, K.

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

G. Xiao, M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Zeller, P.

Appl. Opt. (3)

IEEE J. Quantum Electron. (7)

G. Xiao, M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
[CrossRef]

J. Liu, D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

S. M. Shahruz, T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
[CrossRef]

J. Appl. Phys. (1)

A. Szabo, R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).
[CrossRef]

Laser Focus World (1)

H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World 36(1), 133–137 (2000).

Opt. Lett. (5)

Other (2)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

T. Kellner, F. Heine, V. Ostroumov, G. Huber, T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy level diagrams of (a) the Cr4+:YAG saturable absorber and (b) the Nd3+:YAG laser transition near 946 nm at room temperature.

Fig. 2
Fig. 2

Schematic diagram of the passively Q-switched and intracavity frequency-doubled blue laser.

Fig. 3
Fig. 3

Absorption length and average blue power as a function of the laser diode (LD) wavelength.

Fig. 4
Fig. 4

Comparison of the blue peak power among β-BBO, LBO, and KNbO3.

Fig. 5
Fig. 5

Q-switched blue laser pulse.

Fig. 6
Fig. 6

Comparison between experiments (squares) and simulations (solid line) for (a) average power of IR, (b) repetition rate, (c) pulse width.

Fig. 7
Fig. 7

Comparison between experiments (squares) and simulations (solid line) for (a) average power of blue, (b) repetition rate, (c) pulse width.

Fig. 8
Fig. 8

Influence of reabsorption loss on (a) the Nd:YAG and (b) the Nd:YVO4 quasi-three-level passive Q-switched blue lasers.

Fig. 9
Fig. 9

Filled ratio of the lower-level population and the power deduction that are due to reabsorption as functions of temperature in the gain medium.

Tables (3)

Tables Icon

Table 1 Definition of Parameters

Tables Icon

Table 2 Crystal Properties for Type I SHG at 946 nm

Tables Icon

Table 3 Values of the Parameters Used for the Simulations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dϕtdt=ϕtkgNgtVg-1tc-ηgϕt,
kgc0nigσgVgLgLo,
dϕtdt=ϕtkgNgtVg-ks1Ns1tVs-ks2Ns2tVs-1tc-ηgϕt,
dNs1tdt=-Ns1t-Ns0ts-ks1Ns1tϕt,
ks1c0nisσGSAVsLsLo,
ks2c0nisσESAVsLsLo,
dN2tdt=f2Rp-N2ttg-f2kgNgtϕt,
dN1tdt=-f1Rp-N1t-N1Ttg+f1kgNgtϕt,
N1T=f1NL=N0 exp-ΔE1/kT,
f1=exp-E15-E11/kTi=15exp-E1i-E11/kT,
f2=exp-E22-E21/kTi=12exp-E2i-E21/kT,
dNgtdt=f1+f2Rp-Ngt+N1Ttg-f1+f2kgNgtϕt,
Pblue=2ηSHGPIR2A=4 ηghν tc2PIR2,
Pth=πhνpωL2+ωP2lrt+Toc+2σgLgN1T4σgtgαpf1+f2.
Pth=2πhνpωL2+ωP21-Tlpt+σgLgN0 exp-ΔE1/kT4σgtgαpf1+f2,

Metrics