Abstract

A study of the polarization characteristic of a Co:MgF2 laser with a 1320-nm YAG pumping laser at room temperature is reported. The thresholds, output energies, and efficiencies of the laser are given at the various polarization states. The more intensive emission is in the π-polarization pump laser and σ-polarization laser operation. Performances of the Co:MgF2 lasers are similar for the polarized and unpolarized laser pumping along the optical axis of the crystal.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Rines, P. F. Moulton, D. Welford, G. A. Rines, “High-energy operation of a Co:MgF2 laser,” Opt. Lett. 19, 628–630 (1994).
    [CrossRef] [PubMed]
  2. P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
    [CrossRef]
  3. P. F. Moulton, A. Mooradian, “Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers,” Appl. Phys. Lett. 35, 838–840 (1979).
    [CrossRef]
  4. P. F. Moulton, “Pulse-pumped operation of divalent transition-metal lasers,” IEEE J. Quantum Electron. QE-18, 1185–1188 (1982).
    [CrossRef]
  5. D. Welford, P. F. Moulton, “Room-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988).
    [CrossRef] [PubMed]
  6. J. Harrison, D. Welford, P. F. Moulton, “Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser,” IEEE J. Quantum Electron. 25, 1708–1711 (1989).
    [CrossRef]
  7. S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
    [CrossRef]
  8. N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
    [CrossRef] [PubMed]
  9. M. P. Frolov, Yu. P. Podmar’kov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Comm. 155, 313–316 (1998).
    [CrossRef]
  10. L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
    [CrossRef]
  11. M. D. Struge, “Temperature dependence of multiphonon nonradiative decay at an isolated impurity center,” Phys. Rev. B. 8, 6–14 (1973).
    [CrossRef]

1998 (1)

M. P. Frolov, Yu. P. Podmar’kov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Comm. 155, 313–316 (1998).
[CrossRef]

1994 (1)

1989 (1)

J. Harrison, D. Welford, P. F. Moulton, “Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser,” IEEE J. Quantum Electron. 25, 1708–1711 (1989).
[CrossRef]

1988 (1)

1987 (1)

1985 (2)

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

1982 (1)

P. F. Moulton, “Pulse-pumped operation of divalent transition-metal lasers,” IEEE J. Quantum Electron. QE-18, 1185–1188 (1982).
[CrossRef]

1979 (1)

P. F. Moulton, A. Mooradian, “Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers,” Appl. Phys. Lett. 35, 838–840 (1979).
[CrossRef]

1973 (1)

M. D. Struge, “Temperature dependence of multiphonon nonradiative decay at an isolated impurity center,” Phys. Rev. B. 8, 6–14 (1973).
[CrossRef]

1964 (1)

L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
[CrossRef]

Dietz, R. E.

L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
[CrossRef]

Frolov, M. P.

M. P. Frolov, Yu. P. Podmar’kov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Comm. 155, 313–316 (1998).
[CrossRef]

Guggenheim, H. J.

L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
[CrossRef]

Harrison, J.

J. Harrison, D. Welford, P. F. Moulton, “Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser,” IEEE J. Quantum Electron. 25, 1708–1711 (1989).
[CrossRef]

Johson, L. F.

L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
[CrossRef]

Killinger, D. K.

N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
[CrossRef] [PubMed]

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Løvold, S.

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Menyuk, N.

N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
[CrossRef] [PubMed]

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

Mooradian, A.

P. F. Moulton, A. Mooradian, “Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers,” Appl. Phys. Lett. 35, 838–840 (1979).
[CrossRef]

Moulton, P. F.

D. M. Rines, P. F. Moulton, D. Welford, G. A. Rines, “High-energy operation of a Co:MgF2 laser,” Opt. Lett. 19, 628–630 (1994).
[CrossRef] [PubMed]

J. Harrison, D. Welford, P. F. Moulton, “Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser,” IEEE J. Quantum Electron. 25, 1708–1711 (1989).
[CrossRef]

D. Welford, P. F. Moulton, “Room-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988).
[CrossRef] [PubMed]

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

P. F. Moulton, “Pulse-pumped operation of divalent transition-metal lasers,” IEEE J. Quantum Electron. QE-18, 1185–1188 (1982).
[CrossRef]

P. F. Moulton, A. Mooradian, “Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers,” Appl. Phys. Lett. 35, 838–840 (1979).
[CrossRef]

Podmar’kov, Yu. P.

M. P. Frolov, Yu. P. Podmar’kov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Comm. 155, 313–316 (1998).
[CrossRef]

Rines, D. M.

Rines, G. A.

Struge, M. D.

M. D. Struge, “Temperature dependence of multiphonon nonradiative decay at an isolated impurity center,” Phys. Rev. B. 8, 6–14 (1973).
[CrossRef]

Welford, D.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. F. Moulton, A. Mooradian, “Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers,” Appl. Phys. Lett. 35, 838–840 (1979).
[CrossRef]

L. F. Johson, R. E. Dietz, H. J. Guggenheim, “Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2,” Appl. Phys. Lett. 5, 21–22 (1964).
[CrossRef]

IEEE J. Quantum Electron. (4)

P. F. Moulton, “Pulse-pumped operation of divalent transition-metal lasers,” IEEE J. Quantum Electron. QE-18, 1185–1188 (1982).
[CrossRef]

J. Harrison, D. Welford, P. F. Moulton, “Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser,” IEEE J. Quantum Electron. 25, 1708–1711 (1989).
[CrossRef]

S. Løvold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency tuning characteristics of a Q-switched Co:MgF2 laser,” IEEE J. Quantum Electron. QE-21, 202–208 (1985).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. QE-21, 1582–1595 (1985).
[CrossRef]

Opt. Comm. (1)

M. P. Frolov, Yu. P. Podmar’kov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Comm. 155, 313–316 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B. (1)

M. D. Struge, “Temperature dependence of multiphonon nonradiative decay at an isolated impurity center,” Phys. Rev. B. 8, 6–14 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experiment setup of the Co:MgF2 laser (M1, high reflector at 1320 nm; P, polarizer; R1 and R2, Nd:YAG rod; M2, output coupler; I, isolator; L, lens; M3, high reflector at 2065 nm; C, Co:MgF2 crystal; B, birefringent tuning element; M4, output coupler; F, filter.

Fig. 2
Fig. 2

Input-output curves for the five states of the Co:MgF2 laser pumped by the Nd:YAG polarized laser (■, π polarization input and σ polarization output; ◆, polarization input along the optical axis; ●, σ polarization input and σ polarization output; ▲, π polarization input and π polarization output; ▼, σ polarization input and π polarization output).

Fig. 3
Fig. 3

Input-output curves of the Co:MgF2 laser pumped by the Nd:YAG polarized and unpolarized lasers along the crystal optical axis (●, unpolarized laser pump along the optical axis; ■, polarized laser pump along the optical axis).

Tables (2)

Tables Icon

Table 1 The Five Polarized States of the Co:MgF2

Tables Icon

Table 2 Thresholds and Efficiencies of the Various Polarized States

Metrics