Abstract

A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Tanzer, “Microbiology of dental caries,” in Contemporary Oral Microbiology and Immunology, J. Slots, M. A. Taubman, eds. (Mosby, St. Louis, MO., 1992), pp. 377–424.
  2. P. J. Fitzgerld, P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” J. Am. Dental Assoc. 61, 9–19 (1960).
  3. S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).
  4. S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
    [CrossRef] [PubMed]
  5. S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).
  6. B. Jensen, D. Bratthall, “A new method for the estimation of mutans streptococci in human saliva,” J. Dental Res. 68, 468–471 (1989).
    [CrossRef]
  7. A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
    [CrossRef]
  8. F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
    [CrossRef]
  9. C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
    [CrossRef]
  10. A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).
  11. M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
    [CrossRef]
  12. V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber. Integr. Opt. 9, 142–150 (1990).
  13. V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
    [CrossRef]
  14. B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).
  15. B. D. Gupta, C. D. Singh, “Evanescent absorption coefficient for diffuse source illumination: uniform and tapered fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
    [CrossRef] [PubMed]
  16. B. D. MacCraith, “Enhanced evanescent wave sensors based on sol gel derived porous glass coatings,” Sens. Actuators B 11, 29–34 (1993).
    [CrossRef]
  17. J. L. Ingraham, C. A. Ingraham, Introduction to Microbiology (Brooks/Cole, Pacific Grove, Calif., 2000).
  18. E. M. Rabinovich, “Sol-gel processing—general principles,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass; 1994), pp. 1–17.
  19. I. M. Thomas, “Optical coating fabrication,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass., 1994), pp. 141–158.
  20. C. J. Brinker, G. W. Scherer, eds., Sol-Gel Science, Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1990).
  21. J. Lin, W. B. Chris, “Sol-gel glass as a matrix for chemical and biochemical sensing,” Trends Anal. Chem. 16, 200–211 (1997).
    [CrossRef]
  22. M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
    [CrossRef] [PubMed]
  23. W. J. Loesche, “Role of streptococcus mutans in human dental decay,” Clin. Microbiol. Rev. 50, 353–380 (1986).
  24. B. D. Gupta, D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140, 32–35 (1997).
    [CrossRef]
  25. B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
    [CrossRef]

2001 (1)

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

2000 (1)

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

1999 (1)

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

1998 (1)

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

1997 (3)

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

B. D. Gupta, D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140, 32–35 (1997).
[CrossRef]

J. Lin, W. B. Chris, “Sol-gel glass as a matrix for chemical and biochemical sensing,” Trends Anal. Chem. 16, 200–211 (1997).
[CrossRef]

1996 (1)

A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).

1995 (1)

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

1994 (2)

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
[CrossRef]

B. D. Gupta, C. D. Singh, “Evanescent absorption coefficient for diffuse source illumination: uniform and tapered fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
[CrossRef] [PubMed]

1993 (2)

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

B. D. MacCraith, “Enhanced evanescent wave sensors based on sol gel derived porous glass coatings,” Sens. Actuators B 11, 29–34 (1993).
[CrossRef]

1990 (2)

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber. Integr. Opt. 9, 142–150 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

1989 (2)

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

B. Jensen, D. Bratthall, “A new method for the estimation of mutans streptococci in human saliva,” J. Dental Res. 68, 468–471 (1989).
[CrossRef]

1986 (1)

W. J. Loesche, “Role of streptococcus mutans in human dental decay,” Clin. Microbiol. Rev. 50, 353–380 (1986).

1984 (1)

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

1960 (1)

P. J. Fitzgerld, P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” J. Am. Dental Assoc. 61, 9–19 (1960).

Alaluusua, S.

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

Baldini, F.

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

Bechi, P.

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

Bracci, S.

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

Bratthall, D.

B. Jensen, D. Bratthall, “A new method for the estimation of mutans streptococci in human saliva,” J. Dental Res. 68, 468–471 (1989).
[CrossRef]

Chris, W. B.

J. Lin, W. B. Chris, “Sol-gel glass as a matrix for chemical and biochemical sensing,” Trends Anal. Chem. 16, 200–211 (1997).
[CrossRef]

Cosi, F.

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

Fischer, T.

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

Fitzgerld, P. J.

P. J. Fitzgerld, P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” J. Am. Dental Assoc. 61, 9–19 (1960).

Gerritsen, M.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Greenstein, A.

A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).

Gronroos, L.

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

Gupta, B. D.

B. D. Gupta, D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140, 32–35 (1997).
[CrossRef]

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
[CrossRef]

B. D. Gupta, C. D. Singh, “Evanescent absorption coefficient for diffuse source illumination: uniform and tapered fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
[CrossRef] [PubMed]

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Heinrich-Wetzien, R.

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

Hitzmann, B.

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

Ingraham, C. A.

J. L. Ingraham, C. A. Ingraham, Introduction to Microbiology (Brooks/Cole, Pacific Grove, Calif., 2000).

Ingraham, J. L.

J. L. Ingraham, C. A. Ingraham, Introduction to Microbiology (Brooks/Cole, Pacific Grove, Calif., 2000).

Jansen, J. A.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Jensen, B.

B. Jensen, D. Bratthall, “A new method for the estimation of mutans streptococci in human saliva,” J. Dental Res. 68, 468–471 (1989).
[CrossRef]

John, M. S.

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

Julie, H.

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

Katzir, A.

A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).

Kerry, B.

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

Keyes, P. H.

P. J. Fitzgerld, P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” J. Am. Dental Assoc. 61, 9–19 (1960).

Kneist, S.

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

Kros, A.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Lin, J.

J. Lin, W. B. Chris, “Sol-gel glass as a matrix for chemical and biochemical sensing,” Trends Anal. Chem. 16, 200–211 (1997).
[CrossRef]

Loesche, W. J.

W. J. Loesche, “Role of streptococcus mutans in human dental decay,” Clin. Microbiol. Rev. 50, 353–380 (1986).

Lutterman, J. A.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

MacCraith, B. D.

B. D. MacCraith, “Enhanced evanescent wave sensors based on sol gel derived porous glass coatings,” Sens. Actuators B 11, 29–34 (1993).
[CrossRef]

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Messica, A.

A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).

Muller, C.

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

Murphy, J. A.

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Nampoori, V. P. N.

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

Nolte, R. J. M.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Nystrom, M.

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

Peck, L.

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

Peter, K.

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

Pucciani, F.

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

Rabinovich, E. M.

E. M. Rabinovich, “Sol-gel processing—general principles,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass; 1994), pp. 1–17.

Radhakrishnan, P.

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

Robert, G.

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

Ruddy, V.

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber. Integr. Opt. 9, 142–150 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Savolainen, J.

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

Scheper, T.

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

Schubert, F.

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

Sharma, A.

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
[CrossRef]

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Sharma, D. K.

B. D. Gupta, D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140, 32–35 (1997).
[CrossRef]

Sheila, A. G.

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

Singh, C. D.

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
[CrossRef]

B. D. Gupta, C. D. Singh, “Evanescent absorption coefficient for diffuse source illumination: uniform and tapered fiber sensors,” Appl. Opt. 33, 2737–2742 (1994).
[CrossRef] [PubMed]

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Sprakel, V.

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Stosser, L.

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

Tanzer, J. M.

J. M. Tanzer, “Microbiology of dental caries,” in Contemporary Oral Microbiology and Immunology, J. Slots, M. A. Taubman, eds. (Mosby, St. Louis, MO., 1992), pp. 377–424.

Thomas, I. M.

I. M. Thomas, “Optical coating fabrication,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass., 1994), pp. 141–158.

Tietze, W.

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

Tuompo, H.

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

Vallabhan, C. P. G.

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

Appl. Opt. (1)

Biomaterials (1)

M. Gerritsen, A. Kros, V. Sprakel, J. A. Lutterman, R. J. M. Nolte, J. A. Jansen, “Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors,” Biomaterials 21, 71–78 (2000).
[CrossRef] [PubMed]

Caries Res. (1)

S. Alaluusua, M. Nystrom, L. Gronroos, L. Peck, “Caries-related microbiological findings in a group of teenagers and their parents,” Caries Res. 23, 49–54 (1989).
[CrossRef] [PubMed]

Clin. Microbiol. Rev. (1)

W. J. Loesche, “Role of streptococcus mutans in human dental decay,” Clin. Microbiol. Rev. 50, 353–380 (1986).

Fiber. Integr. Opt. (1)

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber. Integr. Opt. 9, 142–150 (1990).

Int. J. Optoelectron. (1)

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

J. Am. Dental Assoc. (1)

P. J. Fitzgerld, P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” J. Am. Dental Assoc. 61, 9–19 (1960).

J. Appl. Phys. (1)

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

J. Dental Res. (2)

S. Kneist, R. Heinrich-Wetzien, W. Tietze, T. Fischer, L. Stosser, “Salivary microbiology and dentist’s ability in the prediction of caries activity,” J. Dental Res. 75, 1251–1251 (1998).

B. Jensen, D. Bratthall, “A new method for the estimation of mutans streptococci in human saliva,” J. Dental Res. 68, 468–471 (1989).
[CrossRef]

Meas. Sci. Technol. (1)

M. S. John, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Fiber optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films,” Meas. Sci. Technol. 10, N17–N20 (1999).
[CrossRef]

Opt. Commun. (1)

B. D. Gupta, D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140, 32–35 (1997).
[CrossRef]

Opt. Eng. (1)

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).
[CrossRef]

Scand. J. Dental Res. (1)

S. Alaluusua, J. Savolainen, H. Tuompo, L. Gronroos, “Slide-scoring method for estimation of Streptococcus mutan levels in saliva,” Scand. J. Dental Res. 92, 127–133 (1984).

Sens. Actuators B (5)

A. G. Sheila, B. Kerry, K. Peter, H. Julie, G. Robert, “In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sens. Actuators B 72, 174–179 (2001).
[CrossRef]

F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, “In vivo optical-fiber pH sensor for gastro-oesophageal measurements,” Sens. Actuators B 29, 164–168 (1995).
[CrossRef]

C. Muller, B. Hitzmann, F. Schubert, T. Scheper, “Optical chemo- and biosensors for use in clinical applications,” Sens. Actuators B 40, 71–77 (1997).
[CrossRef]

A. Messica, A. Greenstein, A. Katzir, “Theory of fiber optic evanescent wave spectroscopy and sensors,” Sens. Actuators B 35, 2274–2284 (1996).

B. D. MacCraith, “Enhanced evanescent wave sensors based on sol gel derived porous glass coatings,” Sens. Actuators B 11, 29–34 (1993).
[CrossRef]

Trends Anal. Chem. (1)

J. Lin, W. B. Chris, “Sol-gel glass as a matrix for chemical and biochemical sensing,” Trends Anal. Chem. 16, 200–211 (1997).
[CrossRef]

Other (5)

J. L. Ingraham, C. A. Ingraham, Introduction to Microbiology (Brooks/Cole, Pacific Grove, Calif., 2000).

E. M. Rabinovich, “Sol-gel processing—general principles,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass; 1994), pp. 1–17.

I. M. Thomas, “Optical coating fabrication,” in Sol-gel Optics Processing and Applications, C. K. Lisa, ed. (Kluwer Academic, Boston, Mass., 1994), pp. 141–158.

C. J. Brinker, G. W. Scherer, eds., Sol-Gel Science, Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1990).

J. M. Tanzer, “Microbiology of dental caries,” in Contemporary Oral Microbiology and Immunology, J. Slots, M. A. Taubman, eds. (Mosby, St. Louis, MO., 1992), pp. 377–424.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup for the evanescent-wave fiber-optic sensor.

Fig. 2
Fig. 2

Typical plot of the pH variation of human saliva over time.

Fig. 3
Fig. 3

Characteristic absorption spectrum of the indicator dye BPB at two pH levels.

Fig. 4
Fig. 4

UV-visible absorption spectra of a saliva sample mixed with sucrose and BPB dye after 15 min and after 24 h of incubation.

Fig. 5
Fig. 5

Evanescent-wave transmission spectrum of the saliva sample at two different time intervals.

Fig. 6
Fig. 6

Typical real-time response of the fiber optic bacterial sensor at a specific wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|Si|OC2H5+H2O|Si|OH+C2H5OH.
|2Si|OH|Si|O|Si|+H2O.

Metrics