Abstract

The amplitude cancellation method that uses dual out-of-phase sources (a phased array system) can sensitively detect and locate small objects in turbid media. The balance of these two sources is crucial to the system’s detection sensitivity and accuracy. We describe a convenient method with which to adaptively calibrate the amplitudes of the two sources at each scanning position by use of low-frequency modulation of the intensity of the in-phase and the antiphase sources. We achieve accurate localization ability of the phased array system by accounting for the influence of asymmetrical boundaries and the heterogeneous background absorption. Experimental data on human breast phantoms demonstrate that localization accuracy within several millimeters has been accomplished through this method.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
    [CrossRef]
  2. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  3. T. O. McBride, B. W. Pogue, E. D. Gerety, S. P. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  4. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
    [CrossRef] [PubMed]
  5. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  6. M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef] [PubMed]
  8. C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
    [CrossRef] [PubMed]
  9. C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).
  10. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  11. B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
    [CrossRef] [PubMed]
  12. B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
    [CrossRef]
  13. A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
    [CrossRef]
  14. C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
    [CrossRef]
  15. B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 .
  16. Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
    [CrossRef] [PubMed]
  17. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).
  18. S. P. Morgan, K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-540
    [CrossRef]
  19. Y. Chen, C. P. Mu, X. Intes, B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org/abstract.cfm?URI-OPEX-9-4-212 .
  20. M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
    [CrossRef]
  21. D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
    [CrossRef] [PubMed]
  22. K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
    [PubMed]
  23. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  25. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  26. J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffuse light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
    [CrossRef] [PubMed]
  27. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  28. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
    [CrossRef]
  29. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  30. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef] [PubMed]
  31. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
    [CrossRef] [PubMed]
  32. S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [CrossRef] [PubMed]
  33. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
    [CrossRef]
  34. X. Intes, B. Chance, M. J. Holboke, A. G. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-223 .
  35. X. Intes, Y. Chen, X. Li, B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
    [CrossRef] [PubMed]
  36. X. Intes, V. Ntziachristos, A. G. Yodh, B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10, 2–14 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-2 .

2002 (2)

2001 (3)

2000 (5)

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

S. P. Morgan, K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-540
[CrossRef]

1999 (4)

T. O. McBride, B. W. Pogue, E. D. Gerety, S. P. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1998 (3)

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 .

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

1997 (4)

M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
[CrossRef]

K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
[PubMed]

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
[CrossRef] [PubMed]

1996 (4)

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

1994 (2)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

1993 (3)

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

1989 (1)

Achilefu, S.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Amess, P. N.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Anday, E.

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

Andersson-Engels, S.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Barnes, R.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Becker, A.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Berg, R.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Boas, D. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

Bruley, D. F.

K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
[PubMed]

Bugaj, J. E.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Casavola, C.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

X. Intes, V. Ntziachristos, A. G. Yodh, B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10, 2–14 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-2 .

X. Intes, Y. Chen, X. Li, B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
[CrossRef] [PubMed]

X. Intes, B. Chance, M. J. Holboke, A. G. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-223 .

Y. Chen, C. P. Mu, X. Intes, B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org/abstract.cfm?URI-OPEX-9-4-212 .

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 .

C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
[CrossRef] [PubMed]

K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
[PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Chen, Y.

Colak, S. B.

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Cope, M.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Delivoria-Papadopoulos, M.

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

Delpy, D. T.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Dorshow, R. B.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Erickson, M. G.

Fantini, S.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Feng, T. C.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Fishkin, J. B.

Franceschini, M.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Franceschini, M. A.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

Gaida, G.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gerety, E. D.

Gopinath, S. P.

C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
[CrossRef] [PubMed]

Gratton, E.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

Haskell, R. C.

He, L.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Holboke, M. J.

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Hong, L.

Hooft, G. W.

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Intes, X.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Jess, H.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kaneko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Kang, K.

K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
[PubMed]

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Kashke, M.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Knutson, J. R.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffuse light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
[CrossRef] [PubMed]

Knuttel, A.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffuse light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
[CrossRef] [PubMed]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Li, C.

Li, X.

Licha, K.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Lindquist, C.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Liu, H.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Lugara, P. M.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McAdams, M. S.

McBride, T. O.

Moesta, K.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Morgan, S. P.

Mu, C. P.

Murray, T.

Nioka, S.

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 .

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Ntziachristos, V.

X. Intes, V. Ntziachristos, A. G. Yodh, B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10, 2–14 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-2 .

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Oostveen, J. T.

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Ordidge, R.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Osterberg, U. L.

Ovetsky, Y.

Papaioannou, D. G.

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

Paunescu, L. A.

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

Penrice, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Pidikiti, D.

Pifferi, A.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Pogue, B. W.

Poplack, S. P.

Punwani, S.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Rajagopalan, R.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Reynolds, J. S.

Riefke, B.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Robertson, C. S.

C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
[CrossRef] [PubMed]

Schlag, P.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schmitt, J. M.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffuse light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
[CrossRef] [PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Seeber, M.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Semmler, W.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Sevick, E.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Springett, R.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Svaasand, L. O.

Svanberg, S.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Thomas, R.

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Tromberg, B. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Tsay, T. T.

Tyszczuk, L.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Webb, K. J.

Weng, J.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Wilson, B. C.

Worden, K.

Wyatt, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

Xie, C.

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

Yodh, A. G.

X. Intes, V. Ntziachristos, A. G. Yodh, B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10, 2–14 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-2 .

X. Intes, B. Chance, M. J. Holboke, A. G. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-223 .

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

Yong, K. Y.

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Zhang, Y.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Zhou, S.

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

B. Chance, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-10-411 .

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, S. Svanberg, “Reconstruction of diffuse photon density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Biomed. Instrum. Technol. (1)

K. Kang, D. F. Bruley, B. Chance, “Feasibility study of a single- and multiple-source near-infrared phase-modulation device for characterizing biological systems,” Biomed. Instrum. Technol. 31, 373–389 (1997).
[PubMed]

Clin. Hemorheol. Microcirc. (1)

C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugara, E. Gratton, “Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease,” Clin. Hemorheol. Microcirc. 21, 389–393 (1999).

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Invest. Radiol. (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

D. G. Papaioannou, G. W. Hooft, S. B. Colak, J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Y. Chen, S. Zhou, C. Xie, S. Nioka, M. Delivoria-Papadopoulos, E. Anday, B. Chance, “Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function,” J. Biomed. Opt. 5, 194–200 (2000).
[CrossRef] [PubMed]

C. S. Robertson, S. P. Gopinath, B. Chance, “Use of near-infrared spectroscopy to identify traumatic intracranial hematomas,” J. Biomed. Opt. 2, 31–41 (1997).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19, 27–38 (1999).
[CrossRef] [PubMed]

J. Lumin. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

J. Opt. Soc. Am. A (4)

Opt. Express (5)

Photochem. Photobiol. (2)

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA (3)

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Other (2)

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue, B. Chance, R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2979, 98–106 (1997).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phased array configuration in a semi-infinite medium with extrapolated zero boundary condition (solid lines indicate the imaginary source).

Fig. 2
Fig. 2

Amplitude and phase profiles as source strength ratio S 1/S 2 is varied. The cancellation plane will be deflected toward the weaker source (the optical properties of the medium are μ a = 0.05 cm-1, μ s ′ = 10.0 cm-1).

Fig. 3
Fig. 3

Intensities of rf waves from two sources, S1 and S2 (at time t 0, two sources are at equal intensity).

Fig. 4
Fig. 4

Block diagram of the instrument: Osc.’s oscillators; M’s amplitude modulators; LD’s, laser diodes; RX: receiver; ϕ Meter phase meter; PC, Intel Pentium-based personal computer; other abbreviations defined in text.

Fig. 5
Fig. 5

(a) Geometry for scanning of the phased array from location A (in the center) to location B (close to boundary); (b) Illustration of adaptive selection of calibration time index t′. (A1, signals when the array is in location A and without an object; A2, the array is in location A with an object; B1, the array is in location B without an object; B2, the array is in location B with an object).

Fig. 6
Fig. 6

Phase resolution versus data collection time interval for three source phase offsets (low-frequency modulation frequency Ω = 0.5 Hz).

Fig. 7
Fig. 7

Geometry of a finite-sized phantom (the object position is x = 3.50 cm). (b) Raw phase data collected without adaptive calibration. (c) Subtraction of the background scan from the object scan; the detected location of the object is 3.70 ± 0.08 cm (mean error, 0.20 cm). (d) Signal obtained after adaptive calibration by use of amplitude modulation; the detected location of the object is 3.55 ± 0.07 cm (mean error, 0.05 cm). The solid curves in (c) and (d) are fits of the data.

Fig. 8
Fig. 8

Geometry of a heterogeneous background phantom (a fixed absorber, A, is located at x = 4.50 cm, with μ a = 0.30 cm-1; the tumor, B; is located at x = 3.50 cm, with μ a of the tumor object changing from 0.05 to 0.15, 0.30, and 0.45 cm-1). (b) Raw phase data collected without adaptive calibration. (c) Signal obtained after adaptive calibration by use of amplitude modulation (the vertical lines indicate the real object positions). Arrows in (b) and (c) indicate cross points of object scan and baseline scan (reference). Curves with diamonds, reference; with squares, 500-nm ICG; with triangles, 1000-nm ICG; with circles, 1500-nm ICG.

Tables (2)

Tables Icon

Table 1 Localization Accuracy for Different Object Locations

Tables Icon

Table 2 Localization Accuracy for Different Object Absorptions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1ct Ur,t-D2Ur, t+μaUr, t=Sr, t,
S1t=S01+m cosΩt,
S2t=S01-m cosΩt,
log_ampx, t= minlog_ampx, t,
Φx, t = ϕ0.
Δ log_ampx, t=log_ampObj x, t-log_ampBase x, t,
ΔΦx, t=ΦObj x, t-ΦBase x, t,
Δ log_ampA, t0=log_ampA2, t0-log_ampA1, t0,
ΔΦA, t0=ΦA2, t0-ΦA1, t0.
δϕ =Φx, ttt=t ΔT,

Metrics