Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems

Not Accessible

Your library or personal account may give you access

Abstract

A Monte Carlo (MC) method for modeling optical coherence tomography (OCT) measurements of a diffusely reflecting discontinuity embedded in a scattering medium is presented. For the first time to the authors’ knowledge it is shown analytically that the applicability of an MC approach to this optical geometry is firmly justified, because, as we show, in the conjugate image plane the field reflected from the sample is delta-correlated from which it follows that the heterodyne signal is calculated from the intensity distribution only. This is not a trivial result because, in general, the light from the sample will have a finite spatial coherence that cannot be accounted for by MC simulation. To estimate this intensity distribution adequately we have developed a novel method for modeling a focused Gaussian beam in MC simulation. This approach is valid for a softly as well as for a strongly focused beam, and it is shown that in free space the full three-dimensional intensity distribution of a Gaussian beam is obtained. The OCT signal and the intensity distribution in a scattering medium have been obtained for several geometries with the suggested MC method; when this model and a recently published analytical model based on the extended Huygens-Fresnel principle are compared, excellent agreement is found.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo modeling of optical coherence tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo
Appl. Opt. 43(8) 1628-1637 (2004)

Monte Carlo modeling of angiographic optical coherence tomography

Alzbeta E. Hartinger, Ahhyun S. Nam, Isabel Chico-Calero, and Benjamin J. Vakoc
Biomed. Opt. Express 5(12) 4338-4349 (2014)

Particle-fixed Monte Carlo model for optical coherence tomography

Guanglei Xiong, Ping Xue, Jigang Wu, Qin Miao, Rui Wang, and Liang Ji
Opt. Express 13(6) 2182-2195 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.