Abstract

The estimation of chlorophyll concentration in the water by use of a field spectroradiometer above the water surface is necessary for the removal of the effect of specular reflection at the water surface. The amount of specular reflection from the water surface was assessed on the basis of the spectral signature data that was measured above and below the water surface. Furthermore, a method to remove the effect of specular reflection from spectral signature data that was measured above water surface was proposed. Finally, chlorophyll-a concentration was estimated accurately from the spectral signature measured by field spectroradiometer above water surface with the proposed surface reflection model.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, B. Gentilli, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  2. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [CrossRef]
  3. T. Takashima, “A new approach to evaluation of the atmospheric effects on upwelling radiance from the ocean,” Pap. Meteorol. Geophys. 34, 75–81 (1983).
    [CrossRef]
  4. T. Takashima, “Polarization effect on radiative transfer in planetary composite atmospheres with interacting interface,” Earth Moon Planets 33, 59–97 (1985).
    [CrossRef]
  5. T. Takashima, K. Masuda, “A computational procedure of the upwelling radiation emerging from the atmosphere–ocean system,” J. Remote Sens. Soc. Jpn. 6, 5–33 (1986).
  6. R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Boundary-Layer Meteorol. 18, 269–285 (1980).
    [CrossRef]
  7. N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).
  8. T. Miyazaki, “Measuring the water quality of Lake Kasumigaura by LANDSAT remote sensing,” Research Report 89 (National Institute for Environmental Studies, Tsukuba, Japan, 1986).
  9. T. Miyazaki, H. Shimizu, Y. Yasuoka, “High-speed spectroradiometer for remote sensing,” Appl. Opt. 26, 4761–4766 (1987).
    [CrossRef] [PubMed]
  10. C. Cox, W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).
  11. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  12. A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
    [CrossRef]
  13. L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
    [CrossRef]
  14. H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
    [CrossRef]
  15. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  16. J. T. O. Kirk, “Volume scattering functions, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
    [CrossRef]
  17. K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

2001

K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

1999

1998

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

1994

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

1993

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

A. Morel, B. Gentilli, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

1991

J. T. O. Kirk, “Volume scattering functions, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

1987

1986

T. Takashima, K. Masuda, “A computational procedure of the upwelling radiation emerging from the atmosphere–ocean system,” J. Remote Sens. Soc. Jpn. 6, 5–33 (1986).

1985

T. Takashima, “Polarization effect on radiative transfer in planetary composite atmospheres with interacting interface,” Earth Moon Planets 33, 59–97 (1985).
[CrossRef]

1983

1982

N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).

1980

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Boundary-Layer Meteorol. 18, 269–285 (1980).
[CrossRef]

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1955

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).

Althuis, I. J. A.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

Austin, R. W.

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Boundary-Layer Meteorol. 18, 269–285 (1980).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Clark, D. K.

Cox, C.

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).

Dekker, A. G.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

Evans, R. H.

Fraser, R. N.

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

Garbuzov, G.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Gentilli, B.

Gitelson, A.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Gordon, H. R.

Han, L.

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

Hoogenboom, H. J.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

Kaiser, A.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Karnieli, A.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, “Volume scattering functions, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

Kishino, M.

N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).

Liu, L. L.

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

Masuda, K.

T. Takashima, K. Masuda, “A computational procedure of the upwelling radiation emerging from the atmosphere–ocean system,” J. Remote Sens. Soc. Jpn. 6, 5–33 (1986).

Mittenzwey, K.-H.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Miyazaki, T.

T. Miyazaki, H. Shimizu, Y. Yasuoka, “High-speed spectroradiometer for remote sensing,” Appl. Opt. 26, 4761–4766 (1987).
[CrossRef] [PubMed]

N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).

T. Miyazaki, “Measuring the water quality of Lake Kasumigaura by LANDSAT remote sensing,” Research Report 89 (National Institute for Environmental Studies, Tsukuba, Japan, 1986).

Mobley, C. D.

Morel, A.

A. Morel, B. Gentilli, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Munk, W.

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).

Okami, N.

N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).

Oki, K.

K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Rundquist, D. C.

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

Shimizu, H.

Szilagyi, F.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

Takashima, T.

T. Takashima, K. Masuda, “A computational procedure of the upwelling radiation emerging from the atmosphere–ocean system,” J. Remote Sens. Soc. Jpn. 6, 5–33 (1986).

T. Takashima, “Polarization effect on radiative transfer in planetary composite atmospheres with interacting interface,” Earth Moon Planets 33, 59–97 (1985).
[CrossRef]

T. Takashima, “A new approach to evaluation of the atmospheric effects on upwelling radiance from the ocean,” Pap. Meteorol. Geophys. 34, 75–81 (1983).
[CrossRef]

Tamura, M.

K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

Yasuoka, Y.

K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

T. Miyazaki, H. Shimizu, Y. Yasuoka, “High-speed spectroradiometer for remote sensing,” Appl. Opt. 26, 4761–4766 (1987).
[CrossRef] [PubMed]

Appl. Opt.

Boundary-Layer Meteorol.

R. W. Austin, “Gulf of Mexico, ocean-color surface-truth measurements,” Boundary-Layer Meteorol. 18, 269–285 (1980).
[CrossRef]

Earth Moon Planets

T. Takashima, “Polarization effect on radiative transfer in planetary composite atmospheres with interacting interface,” Earth Moon Planets 33, 59–97 (1985).
[CrossRef]

Int. J. Remote Sens.

A. Gitelson, G. Garbuzov, F. Szilagyi, K.-H. Mittenzwey, A. Karnieli, A. Kaiser, “Quantitative remote sensing methods for real-time monitoring of inland waters quality,” Int. J. Remote Sens. 14, 1269–1295 (1993).
[CrossRef]

L. Han, D. C. Rundquist, L. L. Liu, R. N. Fraser, “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment,” Int. J. Remote Sens. 15, 3707–3718 (1994).
[CrossRef]

J. Mar. Res.

C. Cox, W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63–78 (1955).

J. Remote Sens. Soc. Jpn.

T. Takashima, K. Masuda, “A computational procedure of the upwelling radiation emerging from the atmosphere–ocean system,” J. Remote Sens. Soc. Jpn. 6, 5–33 (1986).

N. Okami, M. Kishino, T. Miyazaki, “Correlation studies between spectral radiance reflectance and water qualities in Lake Kasumigaura,” J. Remote Sens. Soc. Jpn. 2, 21–31 (1982).

K. Oki, Y. Yasuoka, M. Tamura, “Estimation of chlorophyll-a and suspended solids concentration in rich concentration water area with remote sensing technique,” J. Remote Sens. Soc. Jpn. 21, 449–456 (2001).

Limnol. Oceanogr.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

J. T. O. Kirk, “Volume scattering functions, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

Pap. Meteorol. Geophys.

T. Takashima, “A new approach to evaluation of the atmospheric effects on upwelling radiance from the ocean,” Pap. Meteorol. Geophys. 34, 75–81 (1983).
[CrossRef]

Remote Sens. Environ.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

Other

T. Miyazaki, “Measuring the water quality of Lake Kasumigaura by LANDSAT remote sensing,” Research Report 89 (National Institute for Environmental Studies, Tsukuba, Japan, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of an optical system above and below the water surface.

Fig. 2
Fig. 2

Ratio of the upwelling spectral radiances reflected from the water surface owing to the total solar radiance the upwelling spectral radiance measured at the water surface of Pt. 1 and Pt. 11.

Fig. 3
Fig. 3

Procedure of verification of the surface reflection model.

Fig. 4
Fig. 4

Spectral radiance distribution of L t , L w , and L w ′ at (a) Pt. 11, (b) Pt. 13, (c) Pt. 15, and (d) Pt. 17.

Fig. 5
Fig. 5

Comparison between the wind velocity and the residual sum of squares of L w and L w ′ measured to each wavelength at each point (Pt. 11–Pt. 18).

Fig. 6
Fig. 6

Relationship between L w and L w ′ of all data when the wind velocity is larger than 1 m/s.

Fig. 7
Fig. 7

Distribution of the correlation coefficient in the three-dimensional space.

Fig. 8
Fig. 8

Comparison between chlorophyll-a concentration and the ratio of reflectance at two different wavelengths.

Fig. 9
Fig. 9

Comparison between chlorophyll-a concentration and the ratio of reflectance at two different wavelengths calculated with the surface reflection model.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

R=LtEd,
Lt=Lw+Lr,
Ed=Ei+Es,
Lw=tn2Lu0,
Lu0=LuZexpkZ,
k=1Z2-Z1logLuZ1LuZ2.
Rw=LwEd.
Lt¯θr, ϕr=1ki=1kLtiθr, ϕr,
Lt¯θr, ϕr=Lrsθr, ϕr+Lriθr, ϕr+Lwθr, ϕr,
Lrsθr, ϕr=14πur0102πrθi, ϕiθr, ϕr×Lsθi, ϕidϕidθi,
Lriθr, ϕr=14πurrθi, ϕiθr, ϕrLiθi, ϕi,
Ur=cos θr, rθi, ϕiθr, ϕr=ρPθi, ϕiθr, ϕr,
Pθi, ϕiθr, ϕr=a2πσ2exp1-2a/σ2,
a=1+cos θi cos θr-sin θi sin θr cosϕi-ϕrcos θi+cos θr2,
σ2=0.003+0.00512×W±0.004.
Lwθr, ϕr=Lt¯θr, ϕr-Lrsθr, ϕr+Lriθr, ϕr.
Lw=L¯t-Lrs+Lri
Lw=tn2LuZexpkZ,

Metrics