Abstract

The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 µm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  2. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, D. Moerder, “Coherent launch site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
    [CrossRef] [PubMed]
  3. Y. Z. Zhao, “Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,” Appl. Opt. 39, 997–1007 (2000).
    [CrossRef]
  4. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
    [CrossRef]
  5. J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
    [CrossRef]
  6. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  7. R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Performance of a 2 µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
    [CrossRef]
  8. A. J. McGrath, J. Munch, G. Smith, P. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
    [CrossRef]
  9. K. P. Chan, D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
    [CrossRef]
  10. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  11. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
    [CrossRef]
  12. W. E. Baker, “Utilization of satellite winds for climate and global change studies,” Global Planet Change 90, 157–163 (1991).
    [CrossRef]
  13. L. M. Little, G. Papen, “Fiber-based lidar for atmospheric water-vapor measurements,” Appl. Opt. 40, 3417–3427 (2001).
    [CrossRef]
  14. A. A. Dorrington, R. Kunnemeyer, P. M. Danehy, “Reference-beam storage for long-range low-coherence pulsed Doppler lidar,” Appl. Opt. 40, 3076–3081 (2001).
    [CrossRef]
  15. M. Harris, G. Constant, C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40, 1501–1506 (2001).
    [CrossRef]
  16. M. Harris, G. N. Pearson, K. D. Ridley, C. Karlsson, F. Olsson, D. Letalick, “Single-particle laser Doppler anemometry at 1.55 µm,” Appl. Opt. 40, 969–973 (2001).
    [CrossRef]
  17. K. D. Ridley, G. N. Pearson, M. Harris, “Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing,” Appl. Opt. 40, 2017–2023 (2001).
    [CrossRef]
  18. C. Karlsson, F. Olsson, D. Letalick, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  19. D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
    [CrossRef]
  20. G. N. Pearson, J. Eacock, “Fibre-based coherent pulsed Doppler lidar for atmospheric monitoring,” in Lidar Remote Sensing for Industrial and Environment Monitoring, U. Singh, ed., Proc. SPIE4484, 51–57 (2001).
  21. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
    [CrossRef]
  22. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
    [CrossRef]
  23. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
    [CrossRef]
  24. R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
    [CrossRef] [PubMed]
  25. A. E. Siegman, “Antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  26. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981).
    [CrossRef]
  27. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
    [CrossRef]
  28. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [CrossRef] [PubMed]
  29. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter,” Appl. Opt. 22, 2619–2628 (1983).
    [CrossRef]
  30. Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. Theory,” Appl. Opt. 29, 4111–4119 (1990).
    [CrossRef] [PubMed]
  31. Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2. Applications,” Appl. Opt. 29, 4120–4132 (1990).
    [CrossRef] [PubMed]
  32. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
    [CrossRef] [PubMed]
  33. G. N. Pearson, C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).
  34. J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
    [CrossRef]
  35. V. Srivastava, J. Rothermel, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, E. W. McCaul, “Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-µm space-based and airborne lidars,” Appl. Opt. 40, 4759–4769 (2001).
    [CrossRef]
  36. J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
    [CrossRef]
  37. M. J. Post, R. E. Cupp, “CO2 lidar backscatter profiles over Hawaii during fall 1988,” Appl. Opt. 31, 4590–4599 (1992).
    [CrossRef] [PubMed]

2001 (7)

2000 (2)

1999 (1)

G. N. Pearson, C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).

1998 (1)

1997 (2)

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
[CrossRef] [PubMed]

D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
[CrossRef]

1996 (3)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
[CrossRef]

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

1995 (1)

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

1994 (2)

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Performance of a 2 µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

1993 (4)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
[CrossRef]

J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, D. Moerder, “Coherent launch site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (3)

W. E. Baker, “Utilization of satellite winds for climate and global change studies,” Global Planet Change 90, 157–163 (1991).
[CrossRef]

K. P. Chan, D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

1990 (3)

1989 (1)

1983 (1)

1981 (1)

1979 (1)

1971 (1)

1966 (1)

Alejandro, S. B.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, “Utilization of satellite winds for climate and global change studies,” Global Planet Change 90, 157–163 (1991).
[CrossRef]

Banks, S. M.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Banta, R. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Booth, D. J.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Bowdle, D. A.

Britton, P.

D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
[CrossRef]

Brown, D. W.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

Burns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

Chan, K. P.

K. P. Chan, D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

Clarke, A. D.

Collier, C. G.

G. N. Pearson, C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).

Constant, G.

Cupp, R. E.

Cutten, D. R.

Danehy, P. M.

Dorrington, A. A.

Eacock, J.

G. N. Pearson, J. Eacock, “Fibre-based coherent pulsed Doppler lidar for atmospheric monitoring,” in Lidar Remote Sensing for Industrial and Environment Monitoring, U. Singh, ed., Proc. SPIE4484, 51–57 (2001).

Flamant, P. H.

Frehlich, R. G.

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
[CrossRef] [PubMed]

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Performance of a 2 µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Gras, J. L.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Hale, C. P.

Haner, D. A.

Hannon, S. M.

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
[CrossRef] [PubMed]

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Performance of a 2 µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. Theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2. Applications,” Appl. Opt. 29, 4120–4132 (1990).
[CrossRef] [PubMed]

Harris, M.

Hawley, J. G.

Henderson, S. W.

Horrigan, F. A.

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Jarzembski, M. A.

Jones, W. D.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Karlsson, C.

Kavaya, M. J.

Killinger, D. K.

K. P. Chan, D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

Koenig, G. G.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

Kunnemeyer, R.

Letalick, D.

Little, L. M.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

McCaul, E. W.

McGrath, A. J.

Menzies, R. T.

Moerder, D.

Munch, J.

Nash, C.

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

Olsson, F.

Oppenheim, U. P.

Papen, G.

Pearson, G. N.

M. Harris, G. N. Pearson, K. D. Ridley, C. Karlsson, F. Olsson, D. Letalick, “Single-particle laser Doppler anemometry at 1.55 µm,” Appl. Opt. 40, 969–973 (2001).
[CrossRef]

K. D. Ridley, G. N. Pearson, M. Harris, “Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing,” Appl. Opt. 40, 2017–2023 (2001).
[CrossRef]

G. N. Pearson, C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).

G. N. Pearson, J. Eacock, “Fibre-based coherent pulsed Doppler lidar for atmospheric monitoring,” in Lidar Remote Sensing for Industrial and Environment Monitoring, U. Singh, ed., Proc. SPIE4484, 51–57 (2001).

Platt, C. M. R.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Post, M. J.

Richardson, D. J.

D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
[CrossRef]

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Ridley, K. D.

Rothermel, J.

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981).
[CrossRef]

B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
[CrossRef] [PubMed]

Siegman, A. E.

Smith, G.

Sonnenschein, C. M.

Spinhirne, J. D.

Srivastava, V.

Steinvall, O. K.

J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

Targ, R.

Taverner, D.

D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
[CrossRef]

Vaughan, J. M.

J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
[CrossRef]

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

Veitch, P.

Ward, C.

Weickmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

Werner, C.

J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
[CrossRef]

Young, S. A.

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

Zhao, Y. Z.

Appl. Opt. (19)

A. E. Siegman, “Antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
[CrossRef] [PubMed]

B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter,” Appl. Opt. 22, 2619–2628 (1983).
[CrossRef]

Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. Theory,” Appl. Opt. 29, 4111–4119 (1990).
[CrossRef] [PubMed]

Y. Z. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2. Applications,” Appl. Opt. 29, 4120–4132 (1990).
[CrossRef] [PubMed]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

M. J. Post, R. E. Cupp, “CO2 lidar backscatter profiles over Hawaii during fall 1988,” Appl. Opt. 31, 4590–4599 (1992).
[CrossRef] [PubMed]

J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, D. Moerder, “Coherent launch site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
[CrossRef] [PubMed]

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
[CrossRef] [PubMed]

A. J. McGrath, J. Munch, G. Smith, P. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

Y. Z. Zhao, “Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,” Appl. Opt. 39, 997–1007 (2000).
[CrossRef]

C. Karlsson, F. Olsson, D. Letalick, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[CrossRef]

M. Harris, G. N. Pearson, K. D. Ridley, C. Karlsson, F. Olsson, D. Letalick, “Single-particle laser Doppler anemometry at 1.55 µm,” Appl. Opt. 40, 969–973 (2001).
[CrossRef]

M. Harris, G. Constant, C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40, 1501–1506 (2001).
[CrossRef]

K. D. Ridley, G. N. Pearson, M. Harris, “Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing,” Appl. Opt. 40, 2017–2023 (2001).
[CrossRef]

A. A. Dorrington, R. Kunnemeyer, P. M. Danehy, “Reference-beam storage for long-range low-coherence pulsed Doppler lidar,” Appl. Opt. 40, 3076–3081 (2001).
[CrossRef]

L. M. Little, G. Papen, “Fiber-based lidar for atmospheric water-vapor measurements,” Appl. Opt. 40, 3417–3427 (2001).
[CrossRef]

V. Srivastava, J. Rothermel, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, E. W. McCaul, “Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-µm space-based and airborne lidars,” Appl. Opt. 40, 4759–4769 (2001).
[CrossRef]

C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
[CrossRef] [PubMed]

Electron. Lett. (1)

D. J. Richardson, P. Britton, D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
[CrossRef]

Global Planet Change (1)

W. E. Baker, “Utilization of satellite winds for climate and global change studies,” Global Planet Change 90, 157–163 (1991).
[CrossRef]

IEEE Trans. Geosci. Remote Sen. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (3)

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

R. G. Frehlich, S. M. Hannon, S. W. Henderson, “Performance of a 2 µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
[CrossRef]

J. Geophys. Res. (2)

J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
[CrossRef]

J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 µm,” J. Geophys. Res. 100, 1043–1065 (1995).
[CrossRef]

J. Mod. Opt. (1)

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

K. P. Chan, D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (2)

J. M. Vaughan, O. K. Steinvall, C. Werner, P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
[CrossRef]

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

G. N. Pearson, C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).

Other (1)

G. N. Pearson, J. Eacock, “Fibre-based coherent pulsed Doppler lidar for atmospheric monitoring,” in Lidar Remote Sensing for Industrial and Environment Monitoring, U. Singh, ed., Proc. SPIE4484, 51–57 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Range dependence of the wideband SNR. The parameters and the symbols are explained in the text.

Fig. 2
Fig. 2

Schematic diagram of the system analyzed. The upper portion shows the transmitted pulse, and the lower portion shows the antenna geometry assumed.

Fig. 3
Fig. 3

Results of the antenna simulations for a transmitted pulse width of 24 ns (power 1/e half-width). For all four panels we assume matched Gaussian beams for the transmitter and BPLO. Both beams had a value of ω0 of 12 mm located at the plane of the telescope aperture and were assumed to be focused at infinity. (A)–(D) The pulse (solid curves) and the range dependence (dotted curves) of the signal were evaluated from approximation (8). (A)–(C) The results, normalized to the monostatic case, for a bistatic arrangement with d = 40 mm and 2θ = 1, 0.1, and 0 mrad, respectively. (D) The monostatic case.

Fig. 4
Fig. 4

Calculated standard deviation of the resultant Doppler estimate versus wideband SNR for N = 300 (solid curve), 3000 (long-dashed curve), and 30,000 (short-dashed curve). See text for the other parameter values.

Fig. 5
Fig. 5

Distribution of return powers for a range gate coincident with a stationary remote target at a range of 400 m. The returns from 30,000 pulses recorded over 17 s are shown.

Fig. 6
Fig. 6

Velocities derived form the hard-target returns. (A) The individual estimates, N = 1; (A1) the histogram of these estimates; (B) the N = 10 estimates; (C) the N = 100 estimates. The means and standard deviations of the histograms (A1)–(C1) in inverse milliseconds are (0.16, 5.05), (0.188, 2.16), and (0.05, 0.44), respectively.

Fig. 7
Fig. 7

Aerosol signal versus range. (A) The ▽ series is the telescope-blocked data and the ● series is the signal for N = 30,000. The range-gate parameters are defined in the text. (B) The SNR derived from the data shown in (A). (C) The normalized signal (■) and two curves corresponding to the results of the simulation. Curve (1) is for matched Gaussian beams with an M 2 = 1 and ω0 = 12 mm. Curve (2) is for an M 2 = 1, ω0 = 8.78-mm BPLO, and an M 2 = 1.5, ω0 = 10.5-mm transmitter.

Fig. 8
Fig. 8

Example of range-gated Doppler estimates derived from the aerosol data for N = 300, 3000, and 30,000.

Fig. 9
Fig. 9

Doppler estimates derived from the aerosol data for N = 300. (A)–(D) Range gates 3, 5, 7, and 9, respectively. The SNRs for these gates were 0.07, 0.059, 0.043, and 0.034, respectively. The left-hand panels show the individual estimates, and the right-hand panels show the distributions.

Fig. 10
Fig. 10

Doppler estimates derived from the aerosol data for N = 3000. (A)–(D) Range gates 3, 5, 7, and 9, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S  all spaceβπITIBPLOdxdydz.
ITx, y, z, t=1ωTsT2exp-2ρT2/ωTsT2×exp-8t-t02/Δt2,
sT=x, y-d/2, zcos θ, -sin θ, 0=x cos θ-y-d/2sin θ,
ρT2=x-sT cos θ2+y-d/2+sT sin θ2+z2.
ωTsT=ω01+M2λsT/πω0221/2,
St  all spaceβπITx, y, zIBPLOx, y, z×exp-8t-sT+sBPLO/c2Δt2dxdydz,
ITx, y, z, t=ITx, y, zexp-8t-t02/Δt2,
St  π2 cos θβπ01ωTx2+ωBPLOx2×exp-2ωT2x+ωBPLO2x×d cos θ-2x sin θ2-8Δt2×t-2x cos θ-d sin θ/c2dx
Δv0.91δN1+2.1δ.

Metrics