Abstract

The thermoconvective flow induced in oil samples and oil-in-water emulsions by irradiation with a laser beam is studied experimentally. The samples are irradiated by He–Ne and CO2 lasers at different power levels. Time-resolved records of temperature and surface waves that propagate in a liquid surface are presented. In laser-heated emulsions the thermoconvective flow leads the dispersed oil droplets to the water-free surface where they agglomerate to form a floating oil layer. The reflected light beam is formed by a speckle pattern whose intensity and contrast show a spiking, quasi-periodic time variation. A theoretical model is proposed to explain this phenomenon.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription