Abstract

The thermoconvective flow induced in oil samples and oil-in-water emulsions by irradiation with a laser beam is studied experimentally. The samples are irradiated by He–Ne and CO2 lasers at different power levels. Time-resolved records of temperature and surface waves that propagate in a liquid surface are presented. In laser-heated emulsions the thermoconvective flow leads the dispersed oil droplets to the water-free surface where they agglomerate to form a floating oil layer. The reflected light beam is formed by a speckle pattern whose intensity and contrast show a spiking, quasi-periodic time variation. A theoretical model is proposed to explain this phenomenon.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Landau, E. Lifschitz, Mechanics of Fluids (Addison-Wesley, Reading, Mass., 1959).
  2. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, N.J., 1962).
  3. A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).
  4. T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
    [CrossRef] [PubMed]
  5. T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
    [CrossRef] [PubMed]
  6. B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
    [CrossRef]
  7. J. S. Marshall, “A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core,” Phys. Fluids 10, 3236–3238 (1998).
    [CrossRef]
  8. M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
    [CrossRef]
  9. J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
    [CrossRef]
  10. N. V. Tabiryan, W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
    [CrossRef]
  11. W. Schaertl, C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E 60, 2020–2028 (1999).
    [CrossRef]
  12. G. Da Costa, “Laser-induced coalescence of petroleum-in-water emulsions,” Opt. Commun. 149, 239–244 (1998).
    [CrossRef]
  13. M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
    [CrossRef]
  14. M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
    [CrossRef]
  15. M. Van den Temple, “Stability of oil-in-water emulsions: mechanism of the coagulation of an emulsion,” Recueil 72, 433–441 (1953).
    [CrossRef]
  16. G. Urbina-Villalba, M. García-Sucre, “Brownian dynamics simulation of emulsion stability,” Langmuir 16, 7975–7985 (2000).
    [CrossRef]
  17. G. Urbina-Villalba, M. García-Sucre, “Effect of non-homogeneous spatial distributions of surfactants on the stability of high-content bitumen-in-water emulsions,” Interciencia 25, 415–422 (2000).
  18. G. Da Costa, J. Calatroni, “Self-holograms of laser-induced surface depressions in heavy hydrocarbons,” Appl. Opt. 17, 2381–2385 (1978).
    [CrossRef]
  19. G. Da Costa, J. Calatroni, “Transient deformation of liquid surfaces by laser-induced thermocapillarity,” Appl. Opt. 18, 233–235 (1979).
    [CrossRef]
  20. G. Da Costa, “Competition between capillary and gravity waves in a viscous liquid film heated by a Gaussian laser beam,” J. Phys. (Paris) 43, 1503–1508 (1982).
    [CrossRef]
  21. J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
    [CrossRef]
  22. G. Da Costa, “Optical visualization of the velocity distribution in a laser-induced thermocapillary liquid flow,” Appl. Opt. 32, 2143–2151 (1993).
    [CrossRef]
  23. T. R. Anthony, H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys. 48, 3888–3894 (1977).
    [CrossRef]
  24. G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
    [CrossRef]
  25. J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
    [CrossRef]
  26. S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
    [CrossRef]
  27. N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
    [CrossRef]
  28. Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
    [CrossRef]
  29. Al. A. Kolomenskii, H. A. Schuessler, “Excitation of capillary waves in strongly absorbing liquids by a modulated laser beam,” Appl. Opt. 38, 6357–6364 (1999).
    [CrossRef]
  30. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1984), pp. 9–74.
  31. T. Okamoto, T. Asakura, “The statistics of dynamic speckles,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1995), Chap. 3, pp. 183–248.
  32. B. Ruth, “Superposition of two dynamic speckle patterns,” J. Mod. Opt. 39, 2421–2436 (1992).
    [CrossRef]
  33. G. Da Costa, “Optical remote sensing of heartbeats,” Opt. Commun. 117, 395–398 (1995).
    [CrossRef]
  34. J. E. Parra, G. Da Costa, “Optical remote sensing of heartbeats,” in Visualization of Temporal and Spatial Data for Civilian and Defense Applications, G. O. Allgood, N. L. Faust, eds., Proc. SPIE4368, 113–121 (2001).
  35. J. D. Briers, S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity of flow fields,” Opt. Commun. 116, 36–42 (1995).
    [CrossRef]
  36. A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [CrossRef]
  37. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).
    [CrossRef]
  38. N. Minorsky, Nonlinear Oscillations (Krieger, Huntington, N.Y., 1974).
  39. W. V. Meyer, G. H. Wegdam, D. Fenistein, J. A. Mann, “Advances in surface-light-scattering instrumentation and analysis: noninvasive measuring of surface tension, viscosity, and other interfacial parameters,” Appl. Opt. 40, 4113–4133 (2001).
    [CrossRef]
  40. J. A. Mann, P. D. Crouser, W. V. Meyer, “Surface fluctuation spectroscopy by surface-light-scattering spectroscopy,” Appl. Opt. 40, 4092–4112 (2001).
    [CrossRef]
  41. D. Fenistein, G. H. Wegdam, W. V. Meyer, J. A. Mann, “Capillary waves on an asymmetric liquid film of pentane in water,” Appl. Opt. 40, 4134–4139 (2001).
    [CrossRef]
  42. R. B. Dorshow, R. L. Swofford, “Application of surface light scattering spectroscopy to photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil,” J. Appl. Phys. 65, 3756–3759 (1989).
    [CrossRef]
  43. H. Linde, P. D. Weidman, M. G. Velarde, “Marangoni-driven solitary waves,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 261–267.
  44. M. G. Velarde, X. L. Chu, A. N. Garazo, “Solitons and other interfacial waves excited and sustained by capillarity,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 108–112.
  45. X. L. Chu, M. G. Velarde, “Nonlinear transverse oscillatory motions at the open surface of a liquid layer subjected to the Marangoni effect,” Phys. Lett. A 136, 126–130 (1989).
    [CrossRef]
  46. B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

2001 (3)

2000 (2)

G. Urbina-Villalba, M. García-Sucre, “Brownian dynamics simulation of emulsion stability,” Langmuir 16, 7975–7985 (2000).
[CrossRef]

G. Urbina-Villalba, M. García-Sucre, “Effect of non-homogeneous spatial distributions of surfactants on the stability of high-content bitumen-in-water emulsions,” Interciencia 25, 415–422 (2000).

1999 (4)

M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
[CrossRef]

J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
[CrossRef]

W. Schaertl, C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E 60, 2020–2028 (1999).
[CrossRef]

Al. A. Kolomenskii, H. A. Schuessler, “Excitation of capillary waves in strongly absorbing liquids by a modulated laser beam,” Appl. Opt. 38, 6357–6364 (1999).
[CrossRef]

1998 (6)

G. Da Costa, “Laser-induced coalescence of petroleum-in-water emulsions,” Opt. Commun. 149, 239–244 (1998).
[CrossRef]

M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
[CrossRef]

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
[CrossRef]

J. S. Marshall, “A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core,” Phys. Fluids 10, 3236–3238 (1998).
[CrossRef]

N. V. Tabiryan, W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

1996 (2)

T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
[CrossRef] [PubMed]

T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
[CrossRef] [PubMed]

1995 (3)

G. Da Costa, “Optical remote sensing of heartbeats,” Opt. Commun. 117, 395–398 (1995).
[CrossRef]

J. D. Briers, S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity of flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

1993 (1)

1992 (1)

B. Ruth, “Superposition of two dynamic speckle patterns,” J. Mod. Opt. 39, 2421–2436 (1992).
[CrossRef]

1991 (1)

A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).

1990 (1)

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

1989 (4)

R. B. Dorshow, R. L. Swofford, “Application of surface light scattering spectroscopy to photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil,” J. Appl. Phys. 65, 3756–3759 (1989).
[CrossRef]

X. L. Chu, M. G. Velarde, “Nonlinear transverse oscillatory motions at the open surface of a liquid layer subjected to the Marangoni effect,” Phys. Lett. A 136, 126–130 (1989).
[CrossRef]

S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
[CrossRef]

N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
[CrossRef]

1985 (1)

J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
[CrossRef]

1982 (3)

G. Da Costa, “Competition between capillary and gravity waves in a viscous liquid film heated by a Gaussian laser beam,” J. Phys. (Paris) 43, 1503–1508 (1982).
[CrossRef]

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

1981 (1)

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

1979 (1)

1978 (1)

1977 (1)

T. R. Anthony, H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys. 48, 3888–3894 (1977).
[CrossRef]

1963 (1)

E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).
[CrossRef]

1953 (1)

M. Van den Temple, “Stability of oil-in-water emulsions: mechanism of the coagulation of an emulsion,” Recueil 72, 433–441 (1953).
[CrossRef]

Acrivos, A.

M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
[CrossRef]

Anthony, T. R.

T. R. Anthony, H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys. 48, 3888–3894 (1977).
[CrossRef]

Asakura, T.

T. Okamoto, T. Asakura, “The statistics of dynamic speckles,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1995), Chap. 3, pp. 183–248.

Berjano, M.

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Blawzdziewicz, J.

J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
[CrossRef]

Boersma, B. J.

B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
[CrossRef]

Briers, J. D.

J. D. Briers, S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity of flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Brito, E.

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Calatroni, J.

Chernyakov, A. L.

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

Chu, X. L.

X. L. Chu, M. G. Velarde, “Nonlinear transverse oscillatory motions at the open surface of a liquid layer subjected to the Marangoni effect,” Phys. Lett. A 136, 126–130 (1989).
[CrossRef]

M. G. Velarde, X. L. Chu, A. N. Garazo, “Solitons and other interfacial waves excited and sustained by capillarity,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 108–112.

Cline, H. E.

T. R. Anthony, H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys. 48, 3888–3894 (1977).
[CrossRef]

Crouser, P. D.

Da Costa, G.

G. Da Costa, “Laser-induced coalescence of petroleum-in-water emulsions,” Opt. Commun. 149, 239–244 (1998).
[CrossRef]

G. Da Costa, “Optical remote sensing of heartbeats,” Opt. Commun. 117, 395–398 (1995).
[CrossRef]

G. Da Costa, “Optical visualization of the velocity distribution in a laser-induced thermocapillary liquid flow,” Appl. Opt. 32, 2143–2151 (1993).
[CrossRef]

G. Da Costa, “Competition between capillary and gravity waves in a viscous liquid film heated by a Gaussian laser beam,” J. Phys. (Paris) 43, 1503–1508 (1982).
[CrossRef]

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

G. Da Costa, J. Calatroni, “Transient deformation of liquid surfaces by laser-induced thermocapillarity,” Appl. Opt. 18, 233–235 (1979).
[CrossRef]

G. Da Costa, J. Calatroni, “Self-holograms of laser-induced surface depressions in heavy hydrocarbons,” Appl. Opt. 17, 2381–2385 (1978).
[CrossRef]

J. E. Parra, G. Da Costa, “Optical remote sensing of heartbeats,” in Visualization of Temporal and Spatial Data for Civilian and Defense Applications, G. O. Allgood, N. L. Faust, eds., Proc. SPIE4368, 113–121 (2001).

Dorshow, R. B.

R. B. Dorshow, R. L. Swofford, “Application of surface light scattering spectroscopy to photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil,” J. Appl. Phys. 65, 3756–3759 (1989).
[CrossRef]

Dowden, J.

N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
[CrossRef]

Elperin, T.

T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
[CrossRef] [PubMed]

T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
[CrossRef] [PubMed]

Fenistein, D.

Fercher, A. F.

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Gallegos, C.

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Garazo, A. N.

M. G. Velarde, X. L. Chu, A. N. Garazo, “Solitons and other interfacial waves excited and sustained by capillarity,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 108–112.

García-Sucre, M.

G. Urbina-Villalba, M. García-Sucre, “Effect of non-homogeneous spatial distributions of surfactants on the stability of high-content bitumen-in-water emulsions,” Interciencia 25, 415–422 (2000).

G. Urbina-Villalba, M. García-Sucre, “Brownian dynamics simulation of emulsion stability,” Langmuir 16, 7975–7985 (2000).
[CrossRef]

Gladush, G. G.

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1984), pp. 9–74.

Grigorova, B. M.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

Guerrero, A.

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Hartikainen, J.

J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
[CrossRef]

Jaarinen, J.

J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
[CrossRef]

Jada, A.

M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
[CrossRef]

Kapadia, P.

N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
[CrossRef]

Kleerin, N.

T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
[CrossRef] [PubMed]

T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
[CrossRef] [PubMed]

Kolomenskii, Al. A.

Al. A. Kolomenskii, H. A. Schuessler, “Excitation of capillary waves in strongly absorbing liquids by a modulated laser beam,” Appl. Opt. 38, 6357–6364 (1999).
[CrossRef]

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Krasitskaya, L. S.

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

Landau, L.

L. Landau, E. Lifschitz, Mechanics of Fluids (Addison-Wesley, Reading, Mass., 1959).

Leal, L. G.

A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).

Levchenko, E. B.

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

Levich, G.

G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, N.J., 1962).

Lifschitz, E.

L. Landau, E. Lifschitz, Mechanics of Fluids (Addison-Wesley, Reading, Mass., 1959).

Linde, H.

H. Linde, P. D. Weidman, M. G. Velarde, “Marangoni-driven solitary waves,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 261–267.

Loewenberg, M.

J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
[CrossRef]

Lorenz, E. N.

E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).
[CrossRef]

Luo, W.

N. V. Tabiryan, W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

Luukkala, M.

J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
[CrossRef]

Mann, J. A.

Marshall, J. S.

J. S. Marshall, “A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core,” Phys. Fluids 10, 3236–3238 (1998).
[CrossRef]

Meyer, W. V.

Minorsky, N.

N. Minorsky, Nonlinear Oscillations (Krieger, Huntington, N.Y., 1974).

Nieuwstadt, F. T. M.

B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
[CrossRef]

Okamoto, T.

T. Okamoto, T. Asakura, “The statistics of dynamic speckles,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1995), Chap. 3, pp. 183–248.

Parra, J. E.

J. E. Parra, G. Da Costa, “Optical remote sensing of heartbeats,” in Visualization of Temporal and Spatial Data for Civilian and Defense Applications, G. O. Allgood, N. L. Faust, eds., Proc. SPIE4368, 113–121 (2001).

Postacioglu, N.

N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
[CrossRef]

Rastopov, S. F.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
[CrossRef]

Rogachevskii, I.

T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
[CrossRef] [PubMed]

T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
[CrossRef] [PubMed]

Roos, C.

W. Schaertl, C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E 60, 2020–2028 (1999).
[CrossRef]

Ruth, B.

B. Ruth, “Superposition of two dynamic speckle patterns,” J. Mod. Opt. 39, 2421–2436 (1992).
[CrossRef]

Salou, M.

M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
[CrossRef]

Sanchez, M. C.

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Schaertl, W.

W. Schaertl, C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E 60, 2020–2028 (1999).
[CrossRef]

Schuessler, H. A.

Al. A. Kolomenskii, H. A. Schuessler, “Excitation of capillary waves in strongly absorbing liquids by a modulated laser beam,” Appl. Opt. 38, 6357–6364 (1999).
[CrossRef]

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Siffert, B.

M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
[CrossRef]

Sukhodol’skii, A. T.

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
[CrossRef]

Swofford, R. L.

R. B. Dorshow, R. L. Swofford, “Application of surface light scattering spectroscopy to photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil,” J. Appl. Phys. 65, 3756–3759 (1989).
[CrossRef]

Szeri, A. J.

A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).

Tabiryan, N. V.

N. V. Tabiryan, W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

Tirumkudulu, M.

M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
[CrossRef]

Tripathi, A.

M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
[CrossRef]

Urbina-Villalba, G.

G. Urbina-Villalba, M. García-Sucre, “Effect of non-homogeneous spatial distributions of surfactants on the stability of high-content bitumen-in-water emulsions,” Interciencia 25, 415–422 (2000).

G. Urbina-Villalba, M. García-Sucre, “Brownian dynamics simulation of emulsion stability,” Langmuir 16, 7975–7985 (2000).
[CrossRef]

Van den Temple, M.

M. Van den Temple, “Stability of oil-in-water emulsions: mechanism of the coagulation of an emulsion,” Recueil 72, 433–441 (1953).
[CrossRef]

Van Haarlem, B.

B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
[CrossRef]

Velarde, M. G.

X. L. Chu, M. G. Velarde, “Nonlinear transverse oscillatory motions at the open surface of a liquid layer subjected to the Marangoni effect,” Phys. Lett. A 136, 126–130 (1989).
[CrossRef]

H. Linde, P. D. Weidman, M. G. Velarde, “Marangoni-driven solitary waves,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 261–267.

M. G. Velarde, X. L. Chu, A. N. Garazo, “Solitons and other interfacial waves excited and sustained by capillarity,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 108–112.

Vizniuk, S. A.

S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
[CrossRef]

Wajnryb, E.

J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
[CrossRef]

Webster, S.

J. D. Briers, S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity of flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

Wegdam, G. H.

Weidman, P. D.

H. Linde, P. D. Weidman, M. G. Velarde, “Marangoni-driven solitary waves,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 261–267.

Wiggins, S.

A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).

Appl. Opt. (7)

Can. J. Chem. Eng. (1)

M. C. Sanchez, M. Berjano, A. Guerrero, E. Brito, C. Gallegos, “Evolution of the microstructure and rheology of O/W emulsions during the emulsification process,” Can. J. Chem. Eng. 76, 479–485 (1998).
[CrossRef]

Can. J. Phys. (1)

J. Hartikainen, J. Jaarinen, M. Luukkala, “Deformation of a liquid surface by laser heating: laser-beam self-focusing and generation of capillary waves,” Can. J. Phys. 64, 1341–1344 (1985).
[CrossRef]

Colloids Surf. A (1)

M. Salou, B. Siffert, A. Jada, “Study of the stability of bitumen emulsions by application of DLVO theory,” Colloids Surf. A 142, 9–16 (1998).
[CrossRef]

Interciencia (1)

G. Urbina-Villalba, M. García-Sucre, “Effect of non-homogeneous spatial distributions of surfactants on the stability of high-content bitumen-in-water emulsions,” Interciencia 25, 415–422 (2000).

J. Appl. Phys. (2)

T. R. Anthony, H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys. 48, 3888–3894 (1977).
[CrossRef]

R. B. Dorshow, R. L. Swofford, “Application of surface light scattering spectroscopy to photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil,” J. Appl. Phys. 65, 3756–3759 (1989).
[CrossRef]

J. Atmos. Sci. (1)

E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).
[CrossRef]

J. Fluid Mech. (2)

A. J. Szeri, S. Wiggins, L. G. Leal, “On the dynamics of suspended microstructure in unsteady spatially inhomogeneous, two dimensional fluid flows,” J. Fluid Mech. 228, 207–241 (1991).

J. Blawzdziewicz, E. Wajnryb, M. Loewenberg, “Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film,” J. Fluid Mech. 395, 29–59 (1999).
[CrossRef]

J. Mod. Opt. (1)

B. Ruth, “Superposition of two dynamic speckle patterns,” J. Mod. Opt. 39, 2421–2436 (1992).
[CrossRef]

J. Phys. (Paris) (1)

G. Da Costa, “Competition between capillary and gravity waves in a viscous liquid film heated by a Gaussian laser beam,” J. Phys. (Paris) 43, 1503–1508 (1982).
[CrossRef]

J. Phys. D (1)

N. Postacioglu, P. Kapadia, J. Dowden, “Capillary waves on the weld pool in penetration welding with a laser,” J. Phys. D 22, 1050–1061 (1989).
[CrossRef]

Langmuir (1)

G. Urbina-Villalba, M. García-Sucre, “Brownian dynamics simulation of emulsion stability,” Langmuir 16, 7975–7985 (2000).
[CrossRef]

Opt. Commun. (6)

J. Calatroni, G. Da Costa, “Interferometric determination of the surface profile of a liquid heated by a laser beam,” Opt. Commun. 42, 5–9 (1982).
[CrossRef]

J. D. Briers, S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity of flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

S. A. Vizniuk, S. F. Rastopov, A. T. Sukhodol’skii, “On thermocapillary aberrational transformation of laser beams,” Opt. Commun. 71, 239–243 (1989).
[CrossRef]

G. Da Costa, “Optical remote sensing of heartbeats,” Opt. Commun. 117, 395–398 (1995).
[CrossRef]

G. Da Costa, “Laser-induced coalescence of petroleum-in-water emulsions,” Opt. Commun. 149, 239–244 (1998).
[CrossRef]

Phys. Fluids (3)

B. Van Haarlem, B. J. Boersma, F. T. M. Nieuwstadt, “Direct numerical simulation of particle deposition onto a free-slip and no-slip surface,” Phys. Fluids 10, 2608–2620 (1998).
[CrossRef]

J. S. Marshall, “A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core,” Phys. Fluids 10, 3236–3238 (1998).
[CrossRef]

M. Tirumkudulu, A. Tripathi, A. Acrivos, “Particle segregation in monodisperse sheared suspensions,” Phys. Fluids 11, 507–509 (1999).
[CrossRef]

Phys. Lett. A (1)

X. L. Chu, M. G. Velarde, “Nonlinear transverse oscillatory motions at the open surface of a liquid layer subjected to the Marangoni effect,” Phys. Lett. A 136, 126–130 (1989).
[CrossRef]

Phys. Rev. B (1)

Al. A. Kolomenskii, H. A. Schuessler, “Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam,” Phys. Rev. B 52, 16–19 (1995).
[CrossRef]

Phys. Rev. E (2)

N. V. Tabiryan, W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

W. Schaertl, C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E 60, 2020–2028 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

T. Elperin, N. Kleerin, I. Rogachevskii, “Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow,” Phys. Rev. Lett. 77, 5373–5376 (1996).
[CrossRef] [PubMed]

T. Elperin, N. Kleerin, I. Rogachevskii, “Turbulent diffusion of small inertial particles,” Phys. Rev. Lett. 76, 224–227 (1996).
[CrossRef] [PubMed]

Recueil (1)

M. Van den Temple, “Stability of oil-in-water emulsions: mechanism of the coagulation of an emulsion,” Recueil 72, 433–441 (1953).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. G. Gladush, L. S. Krasitskaya, E. B. Levchenko, A. L. Chernyakov, “Thermocapillary convection in a liquid under the action of high-power laser radiation,” Sov. J. Quantum Electron. 12, 408–412 (1982).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

B. M. Grigorova, S. F. Rastopov, A. T. Sukhodol’skii, “Coherent correlation spectroscopy of capillary waves,” Sov. Phys. Tech. Phys. 35, 374–376 (1990).

Other (8)

H. Linde, P. D. Weidman, M. G. Velarde, “Marangoni-driven solitary waves,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 261–267.

M. G. Velarde, X. L. Chu, A. N. Garazo, “Solitons and other interfacial waves excited and sustained by capillarity,” in Capillarity Today: Proceedings of an Advanced Workshop on Capillarity, G. Pétré, R. Kippenhahn, H. Araki, W. Beiglbock, D. Ruelle, R. L. Jaffe, J. Ehlers, K. Hepp, A. Sanfeld, eds., Vol. 386 of Springer Lecture Notes in Physics (Springer-Verlag, New York, 1991), pp. 108–112.

N. Minorsky, Nonlinear Oscillations (Krieger, Huntington, N.Y., 1974).

J. E. Parra, G. Da Costa, “Optical remote sensing of heartbeats,” in Visualization of Temporal and Spatial Data for Civilian and Defense Applications, G. O. Allgood, N. L. Faust, eds., Proc. SPIE4368, 113–121 (2001).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1984), pp. 9–74.

T. Okamoto, T. Asakura, “The statistics of dynamic speckles,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1995), Chap. 3, pp. 183–248.

L. Landau, E. Lifschitz, Mechanics of Fluids (Addison-Wesley, Reading, Mass., 1959).

G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, N.J., 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Sketch of the experimental setup: S, a motor oil sample; L, a cw CO2 40-W laser beam incident upon the sample surface; Ph, a video camera that works at 30 frames/s to record the image of the fringe system by previous reflection on the liquid surface; Th, a thermographic camera that works at 4 frames/s to record the temperature distribution on the sample surface; F, a screen where a rectilinear, parallel fringe system is projected by a slide projector. Fringes are normal to the plane of the drawing.

Fig. 2
Fig. 2

Horizontal triads of pictures that correspond to different instants of heating time in the setup of Fig. 1. Details on scales and instants of time that correspond to different frames are given in the text. The frames in each row present, respectively, the fringe-coded surface profile, the color-coded temperature distribution, and a plot of the temperature distribution along a straight line that passes through the center of the heated region. The vertical bar at the right-hand side shows the color-coded temperature. Laser heating is interrupted at t = 43.70 s immediately before frame (f).

Fig. 3
Fig. 3

Schematic representation of the thermoconvective flow induced in liquid sample S by irradiation with laser beam L in the experiment of Fig. 1. The liquid flows radially outward from the central hot region in the liquid-free surface and returns to the central point to close the loop.

Fig. 4
Fig. 4

Sketch of the experimental setup: S, a sample of crude oil; ib, a He–Ne 30-mW laser beam focused on the sample surface; rb, the light beam reflected at the sample surface; M, a mirror; O, an observation plane; Ph, a video camera that works at 30 frames/s; Th, a thermographic camera that works at 4 frames/s.

Fig. 5
Fig. 5

Horizontal triads of pictures correspond to different instants of heating time in the setup of Fig. 4. The three frames in each row represent, respectively, the light intensity distribution recorded in observation plane O, the color-coded temperature distribution on the sample surface, and a plot of the temperature distribution along a straight line that passes through the center of the heated region on the sample surface. The vertical bar at the lower right-hand side shows the color-coded temperature. Details about the scales and the instants of time that correspond to different frames are given in the text. Laser heating is interrupted immediately after frame (f) at t = 46.31 s. The pairs of pictures in frames (g)–(i) record only temperature data.

Fig. 6
Fig. 6

Negative photographic sequence (1 frame/5 s) recorded in a setup similar to the one in Fig. 4, except that the 30-mW He–Ne laser beam is unfocused and S is a sample of O/W emulsion with 20% concentration. The round intensity maxima with regular geometric patterns are images of oil droplets that emerge from the laser-heated region. Coalescence and lateral expansion of oil droplets occur when the droplets arrive on the water-free surface (frame L) because of the direct heating action of the laser beam. The sequence then restarts as in frame A.

Fig. 7
Fig. 7

Positive photographs recorded in the setup of Fig. 4, where sample S is an O/W emulsion with 70% concentration. Frames (a)–(h) cover the initial heating stage (heat time t < 5 min) at approximately equally spaced time intervals. Frames (i)–(l) cover the final heating stage (t > 15 min) at 5-min intervals between consecutive frames.

Fig. 8
Fig. 8

Photographic sequence (taken at 30 frames/s in the setup of Fig. 4) of the interference fringe system periodically reflected back from the O/W emulsion with 70% concentration.

Fig. 9
Fig. 9

Contrast of the speckle pattern backscattered from the O/W emulsion with 70% concentration in the experiment of Fig. 4. The sequences in (a)–(c) start at heating times of t = 0, 15, and 30 min, respectively. The horizontal axis in each figure represents the number of video frames (at 30 frames/s) that have elapsed after the initial heating time.

Fig. 10
Fig. 10

Light intensity (arbitrary units) in the neighborhood of the central point of the backscattered light beam as a function of time. The sample is the O/W emulsion with 70% concentration in the setup of Fig. 4. Light intensity is spatially integrated in a rectangular region centered in the central point of the light pattern. The sequences in (a)–(c) start at heating times of t = 0, 15, and 30 min, respectively. The horizontal axis in each figure represents the number of frames (at 30 frames/s) that have elapsed after the initial heating time.

Fig. 11
Fig. 11

Number N of bursts counted in each plot of the kind shown in Figs. 9 and 10 (thus corresponding to 1 min of recording time) as a function of an initial heating time (t) represented in minutes on the abscissa axis.

Fig. 12
Fig. 12

Left column: color-coded thermographic record of the temperature distribution on the surface of the O/W emulsion with 70% concentration heated by a He–Ne 30-mW laser beam according to the setup of Fig. 4. Right column: plot of the temperature distribution along a straight line that passes through the center of the heated region. The minimum and maximum temperature values are 22 °C and 35 °C, respectively. The width of each frame corresponds to 5 mm of the liquid surface. The vertical bar represents the color-coded temperature. Heating is interrupted immediately before frame (e) at t = 47.04 s.

Fig. 13
Fig. 13

Black horizontal strip represents the oil layer that floats upon the O/W emulsion. Dispersed oil droplets are represented by filled circles in the underlying region. Point O is the central hot point, Oxh is a rectangular coordinate system, the abscissa axis Ox lies upon the emulsion surface, and h(x, t) is the oil-layer-free surface profile as a function of time.

Fig. 14
Fig. 14

Potential energy U(h) corresponds to fictitious force F(h) [right-hand side of Eq. (2)] for the values of β = 100, α = 50, and δ = 1. A fictitious particle (whose abscissa coincides with the oil layer thickness h oscillates within the potential well between the extreme values of h = 0 and h = h max. At these points the kinetic energy is null and U(h) attains its maximum value. The abscissa of the equilibrium point, where F(h) = 0, is h = δ log(β/A), which corresponds to the ordinate of the inflection points of h(t) in Fig. 17(a).

Fig. 15
Fig. 15

Oil-layer-free surface profile h(x) calculated from Eq. (2) at different instants of time (t) for the values of β = 100, α = 50, and δ = 1. Only surface points with x > 0 are represented. The surface profile is symmetric with respect to point x = 0. Note that surface waves propagate outward from the central point.

Fig. 16
Fig. 16

Numerically calculated light intensity distribution (arbitrary vertical scale) that appears in the observation plane during the growth and early propagation of a wave packet in the liquid surface (Fig. 15). The sequence extends to 0.25 s at regular time intervals, which is the numerical simulation of the transient fringe system that appears in Fig. 8.

Fig. 17
Fig. 17

(a) Thickness h(0, t) of the oil layer at the central point x = 0 as a function of time, as calculated from Eq. (2) for the values of β = 100, α = 50, and δ = 1. (b) Light intensity (in arbitrary units) that results from coherent superposition of the light beam reflected at the oil-layer-free surface and the corresponding light beam reflected at the oil–water interface. The time scale is the same as in (a). The calculation was performed at point x = 0. This plot is the numerical simulation of the corresponding experimental plots in Figs. 10(a)10(c).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

hx, t/t=Φx, t-tAx,
Φx, t/t=β exp-hx, t/δ,
Ax=α exp-x/a2.
h¨=β exp-h/δ-Ax.
Uh=Ah+βδ exp-h/δ-Aδ1+logβ/A,
Ah=βδ1-exp-h/δ.
T=20h maxduβδ1-exp-u/δ-Au1/2.
Tx, t=T0x/a21+t/t0x/a2duu expu=Ei-xa2-Ei-x/a21+t/t0,
Tx, t=T0tt0exp-x/a2+Ot2.

Metrics