Abstract

An optical near-infrared process sensor for electric arc furnace pollution control and energy efficiency is proposed. A near-IR tunable diode laser has performed simultaneous in situ measurements of CO (1577.96 nm), H2O (1577.8 and 1578.1 nm), and temperature in the exhaust gas region above a laboratory burner fueled with methane and propane. The applicable range of conditions tested is representative of those found in a commercial electric arc furnace and includes temperatures from 1250 to 1750 K, CO concentrations from 0 to 10%, and H2O concentrations from 3 to 27%. Two-tone frequency modulation was used to increase the detection sensitivity. An analysis of the method’s accuracy has been conducted with 209 calibration and 105 unique test burner setpoints. Based on the standard deviation of differences between optical predictions and independently measured values, the minimum accuracy of the technique has been estimated as 36 K for temperature, 0.5% for CO, and 3% for H2O for all 105 test data points. This accuracy is sufficient for electric arc furnace control. The sensor’s ability to nonintrusively measure CO and temperature in real time will allow for improved process control in this application.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  2. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
    [CrossRef] [PubMed]
  3. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  4. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
    [CrossRef]
  5. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.
  6. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  7. L. C. Philippe, R. K. Hanson, “Laser diode wavelength modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  8. E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).
  9. N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).
  10. M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
    [CrossRef]
  11. S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).
  12. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  13. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements”, in: Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.
  14. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–712 (1992).
    [CrossRef] [PubMed]
  15. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  16. W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen-air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49(2), 107–117 (1993).
    [CrossRef]
  17. T. K. Aizawa, T. Tamaru, “Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser,” Appl. Opt. 38, 1733–1741 (1999).
    [CrossRef]
  18. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]

2000 (1)

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

1999 (2)

1998 (5)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

1997 (1)

E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).

1996 (2)

1993 (3)

1992 (1)

1991 (1)

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Aizawa, T. K.

Allen, M. G.

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen-air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49(2), 107–117 (1993).
[CrossRef]

Allendorf, S. W.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Anderson, S. D.

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Arroyo, M. P.

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.

Bechara, J.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements”, in: Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chou, S. I.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Daudin, B.

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Davis, S. J.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen-air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49(2), 107–117 (1993).
[CrossRef]

Dworatzek, C.

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Evenson, E. J.

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldstein, D.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Goodfellow, H. D.

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).

Guerard, J.

E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).

Hanson, R. K.

Hardesty, D. R.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kempe, M. J.

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

Kessler, W. J.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen-air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49(2), 107–117 (1993).
[CrossRef]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements”, in: Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Malcomson, A. P.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mihalcea, R. M.

Nagali, V.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ottesen, D. K.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Perrin, N.

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Philippe, L. C.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sanders, S. T.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.

Schiff, H. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements”, in: Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Segall, J.

Silver, J. A.

Smith, C. W.

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Sonnenfroh, D. M.

Tamaru, T.

Thomson, M. J.

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

Upschulte, B. L.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Vuillermoz, J. C.

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Wang, J.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (8)

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–712 (1992).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser absorption measurements of CO2 near 2.0 µm at elevated temperatures,” Appl. Opt. 37, 8341–8347 (1998).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

T. K. Aizawa, T. Tamaru, “Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-µm distributed-feedback diode laser,” Appl. Opt. 38, 1733–1741 (1999).
[CrossRef]

Electr. Furn. Conf. Proc. (2)

E. J. Evenson, H. D. Goodfellow, J. Guerard, “Energy optimization and continuous fume analysis at CO-STEEL LASCO: the expert furnace system optimization process,” Electr. Furn. Conf. Proc. 55, 435–453 (1997).

N. Perrin, C. Dworatzek, J. C. Vuillermoz, B. Daudin, S. D. Anderson, “Continuous fume analysis at Vallourec Saint-Saulve,” Electr. Furn. Conf. Proc. 49, 233–241 (1991).

Iron Steel Eng. (1)

S. W. Allendorf, D. K. Ottesen, D. R. Hardesty, D. Goldstein, C. W. Smith, A. P. Malcomson, “Laser-based sensor for real-time measurement of offgas composition and temperature in BOF steelmaking,” Iron Steel Eng. 74, 31–35 (1998).

Ironmaking Steelmaking (1)

M. J. Thomson, E. J. Evenson, M. J. Kempe, H. D. Goodfellow, “Control of greenhouse gas emissions from EAF steelmaking: evaluation from electric arc furnace steelmaking,” Ironmaking Steelmaking 27, 273–279 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen-air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49(2), 107–117 (1993).
[CrossRef]

Meas. Sci. Technol. (2)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Other (2)

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements”, in: Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In-situ combustion measurements of CO, CO2, H2O and temperature using diode-laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 407–413.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a potential optical measurement and process control system.

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Optical response for the best CO line at approximately isothermal conditions (1500 K).

Fig. 4
Fig. 4

Lorentz profile modeling results for the maximum jump scan range about the optimal CO peak (T = 1500 K).

Fig. 5
Fig. 5

Comparison of the isothermal CO calibration relation with the test data. The CO peak height is plotted against the measured CO mole fraction.

Fig. 6
Fig. 6

Comparison of the gas temperature calibration relation with the test data. The ratio of H2O 2 and H2O 1 peak heights is plotted against the measured gas temperature.

Fig. 7
Fig. 7

Comparison of the H2O calibration relation with isothermal test data points. The H2O 1 peak height is plotted against the calculated H2O mole fraction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

IνI0ν=exp-ανL,
YCO=c1 PCOP2P1+c2P1,
T=c3P2P1+c4.

Metrics