Abstract

We demonstrate an integrated-optical unbalanced Mach-Zehnder interferometer in lithium niobate for detecting wavelength shifts of light sources, such as laser diodes and superluminescentdiodes at λ = 844 nm. The output signal can be used to stabilize the light source. Because of the temperature dependence of the effective refractive index and the thermal expansion of the substrate, the device acts also as a temperature sensor. The temperature sensitivity of the interferometer was compensated for by the combination of proton exchanged- and annealed proton exchanged-channel waveguides by approximately two orders of magnitude. The thermo-optic coefficients of the extraordinary effective refractive index in integrated optical channel waveguides in LiNbO3 have been measured with high accuracy over a temperature range from 10 °C to 40 °C.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
    [CrossRef]
  2. S. Magne, S. Rougeault, M. Vilela, P. Ferdinand, “State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors,” Appl. Opt. 38, 2516–2523 (1999).
  3. W. J. Bock, W. Urbanczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
    [CrossRef] [PubMed]
  4. W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
    [CrossRef] [PubMed]
  5. W. J. Bock, W. Urbanczyk, “Temperature desensitization of a fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
    [CrossRef]
  6. J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [CrossRef]
  7. M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).
  8. M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).
  9. C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 189–199 (1986).
    [CrossRef]
  10. M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
    [CrossRef]
  11. C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: tabulated data,” EMIS Datareview RN = 16001 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .
  12. C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: Discussion” (IEE Electronic Materials Information Service, EMIS Datareview RN = 16002 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .
  13. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
    [CrossRef]
  14. L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
    [CrossRef]

1999 (1)

1998 (1)

1996 (2)

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature-hydrostatic pressure cross-sensitivity effect in elliptical-core, highly birefringent fibers,” Appl. Opt. 35, 6267–6270 (1996).
[CrossRef] [PubMed]

1995 (1)

M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
[CrossRef]

1994 (1)

1989 (1)

M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).

1986 (1)

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 189–199 (1986).
[CrossRef]

1985 (1)

M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

1982 (2)

L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
[CrossRef]

J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Bock, W. J.

Bradley, E. M.

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

Buczynski, R.

Domanski, A. W.

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Ferdinand, P.

Florea, C.

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: tabulated data,” EMIS Datareview RN = 16001 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: Discussion” (IEE Electronic Materials Information Service, EMIS Datareview RN = 16002 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

Jackel, J. L.

J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Johnson, L. M.

L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
[CrossRef]

Karthe, W.

M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
[CrossRef]

M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).

M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).

Kirkby, C. G. J.

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: tabulated data,” EMIS Datareview RN = 16001 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: Discussion” (IEE Electronic Materials Information Service, EMIS Datareview RN = 16002 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Leonberger, F. J.

L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
[CrossRef]

Magne, S.

Miles, E. W.

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

Pratt, G. W.

L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
[CrossRef]

Rasch, A.

M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
[CrossRef]

M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).

M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).

Rice, C. E.

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 189–199 (1986).
[CrossRef]

Rice, C. R.

J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Rottschalk, M.

M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
[CrossRef]

M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).

M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).

Rougeault, S.

Stone, R. L.

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

Urbanczyk, W.

Veselka, J. J.

J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Vilela, M.

Wooten, E. L.

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

J. L. Jackel, C. R. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

L. M. Johnson, F. J. Leonberger, G. W. Pratt, “Integrated optical temperature sensor,” Appl. Phys. Lett. 41, 134–136 (1982).
[CrossRef]

J. Lightwave Technol. (1)

E. L. Wooten, R. L. Stone, E. W. Miles, E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol. 14, 2530–2536 (1996).
[CrossRef]

J. Opt. Commun. (2)

M. Rottschalk, A. Rasch, W. Karthe, “Temperature dependence of the extraordinary refractive index in proton exchanged LiNbO3 waveguides,” J. Opt. Commun. 6, 10–13 (1985).

M. Rottschalk, A. Rasch, W. Karthe, “Efficient electro-optic x-switch using proton exchanged LiNbO3 channel waveguides,” J. Opt. Commun. 10, 138–140 (1989).

J. Solid State Chem. (1)

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 189–199 (1986).
[CrossRef]

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
[CrossRef]

Pure Appl. Opt. (1)

M. Rottschalk, A. Rasch, W. Karthe, “Determination of thermo-optic coefficients in PE and APE:LiNbO3 channel waveguides for phase-compensated sensor applications,” Pure Appl. Opt. 4, 241–249 (1995).
[CrossRef]

Other (2)

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: tabulated data,” EMIS Datareview RN = 16001 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

C. G. J. Kirkby, “Refractive index of LiNbO3, wavelength dependence: Discussion” (IEE Electronic Materials Information Service, EMIS Datareview RN = 16002 Properties of Lithium Niobate, K. K. Wong, ed. (Institution of Electrical Engineers, INSPEC, London, 1989) Chap. 8.2, updated by C. Florea, http://www.iee.org/Publish/Books/EMIS .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Asymmetric Mach-Zehnder interferometer in LiNbO3 with PE segment for thermo-optic compensation.

Fig. 2
Fig. 2

Fabry-Perot measurement of thermo-optic coefficients in channel waveguides. (b) Fabry-Perot modulation of the guided optical power in a 12-mm long PE-channel waveguide and (c) in a APE-channel waveguide, respectively.

Fig. 3
Fig. 3

Temperature dependence of the relative thermo-optic coefficients of APE- and PE-channel waveguides.

Fig. 4
Fig. 4

Geometrical path-length difference of the asymmetric Mach-Zehnder interferometer can be reduced to an isosceles triangle.

Fig. 5
Fig. 5

Dependence of the optimal PE-segment length from the temperature. (b) Temperature dependence of the temperature sensitivity for a structure designed for a thermo-optic compensation at 25 °C.

Fig. 6
Fig. 6

Contrast function for light sources with different spectral widths in dependence of the geometrical path-length difference. (b) Modulated output signal of the asymmetric Mach-Zehnder interferometer if a superluminescent diode is used.

Fig. 7
Fig. 7

Masking technique for self-adjusting of the PE-segment to the APE waveguide.

Fig. 8
Fig. 8

Experimental configuration to characterize the asymmetric Mach-Zehnder interferometers.

Fig. 9
Fig. 9

Wavelength and (b) temperature sensitivity of the half-wave voltage.

Fig. 10
Fig. 10

Temperature sensitivity of the phase of a asymmetric Mach-Zehnder interferometer with a PE-segment and (b) in an enlarged detail near the point of total thermo-optic compensation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

γ=λ2NLδgδT-κ,
γ=1NdNdT and κ=1LdLdT.
Pϕ=12 P0K1a exp-α1l1+K21-a×exp-α2l2+2K1K2a1-a×exp-0.5α1l1+α2l2cos ϕ,
P0ϕλ, T, U12 P01+cos ϕλ, T, U.
ΔP=δPδλ Δλ+δPδT ΔT+δPδU ΔU.
ϕ=k0N2l2-N1l1 whereby k0=2πλ,
ϕ=k0NAPEΔl+ΔNΘlΘ.
δϕδλ=k0NAPEΔlσAPE-1λ+ΔNΘlΘ1ΔNΘδΔNΘδλ-1λ,
δϕδλ=k0NAPEΔl-dσAPE-1λ+NPEdσAPE-1λ+ΔNΘlΘ1ΔNΘδΔNΘδλ-1λ.
δϕδT=k0NAPEΔlγAPE+κ+ΔNΘlΘ1ΔNΘδΔNΘδT+κ
δϕδT=k0NAPEΔl-dγAPE+κ+NPEdγPE+κ+ΔNΘlΘ1ΔNΘδΔNΘδT+κ.
NAPEΔl-dγAPE+κ+ΔNΘlΘ1ΔNΘδΔNΘδT+κ=NPEdγPE+κ
d=NAPEΔlγAPE+κ+ΔNΘlΘ1ΔNΘδΔNΘδT+κNAPEγAPE-NPEγPE+NAPE-NPEκ.
lkλ2ΔλNeffNeff: waveguide index,
y=a1x-s4+a2x-s3+a3x-s2+b.

Metrics