Abstract

A detector-based spectral irradiance scale has been realized at the National Institute of Standards and Technology (NIST). Unlike the previous NIST spectral irradiance scales, the new scale is generated with filter radiometers calibrated for absolute spectral power responsivity traceable to the NIST high-accuracy cryogenic radiometer instead of with the gold freezing-point blackbody. The calibrated filter radiometers are then used to establish the radiance temperature of a high-temperature blackbody (HTBB) operating near 3000 K. The spectral irradiance of the HTBB is then determined with knowledge of the geometric factors and is used to assign the spectral irradiances of a group of 1000-W free-electron laser lamps. The detector-based spectral irradiance scale results in the reduction of the uncertainties from the previous source-based spectral irradiance scale by at least a factor of 2 in the ultraviolet and visible wavelength regions. The new detector-based spectral irradiance scale also leads to a reduction in the uncertainties in the shortwave infrared wavelength region by at least a factor of 2–10, depending on the wavelength. Following the establishment of the spectral irradiance scale in the early 1960s, the detector-based spectral irradiance scale represents a fundamental change in the way that the NIST spectral irradiance scale is realized.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” NIST Tech. Note 1421 (National Institute of Standards and Technology, Gaithersburg, Md., 1996).
  2. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
    [CrossRef] [PubMed]
  3. C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,” Appl. Opt. 32, 2936–2948 (1993).
    [CrossRef] [PubMed]
  4. Y. Ohno, “Improved photometric standards and calibration procedures at NIST,” J. Res. Natl. Inst. Stand. Technol. 102, 323–331 (1997).
    [CrossRef]
  5. K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
    [CrossRef]
  6. J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).
  7. H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
    [CrossRef]
  8. K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
    [CrossRef]
  9. V. I. Sapritsky, “Black-body radiometry,” Metrologia 32, 411–427 (1995–1996).
    [CrossRef]
  10. H. Preston-Thomas, “The ITS-90,” Metrologia 27, 3–10 (1990).
    [CrossRef]
  11. J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
    [CrossRef]
  12. T. C. Larason, S. S. Bruce, A. C. Parr, “Spectroradiometric detector measurements: Part I—Ultraviolet detectors and Part II—Visible to near-infrared detectors,” NIST Measurement Services SP 250-41 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).
  13. P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
    [CrossRef]
  14. H. W. Yoon, C. E. Gibson, “Determination of radiance temperatures using detectors calibrated for absolute spectral power response,” in Proceedings of the Seventh International Symposium on Temperature and Thermal Measurements in Industry and Science, J. Dubbeldam, M. J. de Groot, eds. (Edauw and Johannisen, The Netherlands, 1999), pp. 737–742.
  15. P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
    [CrossRef]
  16. T. J. Quinn, Temperature (Academic, London, 1990).
  17. A. Thompson, H. M. Chen, “Beamcon III: a linearity measurement instrument for optical detectors,” J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994).
    [CrossRef]
  18. H. W. Yoon, C. E. Gibson, “Comparison of the absolute detector-based spectral radiance assignment with the current NIST-assigned spectral radiance of tungsten strip lamps,” Metrologia 37, 429–432 (2000).
    [CrossRef]
  19. J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
    [CrossRef]
  20. L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
    [CrossRef]
  21. G. Bernhard, G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999).
    [CrossRef]
  22. Y. Ohno, “Photometric calibrations,” NIST Measurement Services SP 250-37 (National Institute of Standards and Technology, Gaithersburg, Md., 1997).

2000 (3)

J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
[CrossRef]

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

H. W. Yoon, C. E. Gibson, “Comparison of the absolute detector-based spectral radiance assignment with the current NIST-assigned spectral radiance of tungsten strip lamps,” Metrologia 37, 429–432 (2000).
[CrossRef]

1999 (1)

G. Bernhard, G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999).
[CrossRef]

1998 (2)

L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

1997 (1)

Y. Ohno, “Improved photometric standards and calibration procedures at NIST,” J. Res. Natl. Inst. Stand. Technol. 102, 323–331 (1997).
[CrossRef]

1996 (1)

1994 (1)

A. Thompson, H. M. Chen, “Beamcon III: a linearity measurement instrument for optical detectors,” J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994).
[CrossRef]

1993 (1)

1991 (1)

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

1990 (3)

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

H. Preston-Thomas, “The ITS-90,” Metrologia 27, 3–10 (1990).
[CrossRef]

1970 (1)

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
[CrossRef]

Bernhard, G.

G. Bernhard, G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999).
[CrossRef]

Bruce, S. S.

T. C. Larason, S. S. Bruce, A. C. Parr, “Spectroradiometric detector measurements: Part I—Ultraviolet detectors and Part II—Visible to near-infrared detectors,” NIST Measurement Services SP 250-41 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

Cebula, R. P.

L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
[CrossRef]

Chen, H. M.

A. Thompson, H. M. Chen, “Beamcon III: a linearity measurement instrument for optical detectors,” J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994).
[CrossRef]

Cromer, C. L.

Eppeldauer, G.

Erminy, D. E.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
[CrossRef]

Fowler, J. B.

J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
[CrossRef]

Gala Yousef, S.

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Galal-Yousef, S.

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

Gentile, T. R.

Gibson, C. E.

H. W. Yoon, C. E. Gibson, “Comparison of the absolute detector-based spectral radiance assignment with the current NIST-assigned spectral radiance of tungsten strip lamps,” Metrologia 37, 429–432 (2000).
[CrossRef]

H. W. Yoon, C. E. Gibson, “Determination of radiance temperatures using detectors calibrated for absolute spectral power response,” in Proceedings of the Seventh International Symposium on Temperature and Thermal Measurements in Industry and Science, J. Dubbeldam, M. J. de Groot, eds. (Edauw and Johannisen, The Netherlands, 1999), pp. 737–742.

Hardis, J. E.

Hattenburg, A. T.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
[CrossRef]

Hilsenrath, E.

L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
[CrossRef]

Houston, J. M.

Hsia, J. J.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Huang, L. K.

L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
[CrossRef]

Jackson, J. K.

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).

Kostkowski, H. J.

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
[CrossRef]

Larason, T. C.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,” Appl. Opt. 32, 2936–2948 (1993).
[CrossRef] [PubMed]

T. C. Larason, S. S. Bruce, A. C. Parr, “Spectroradiometric detector measurements: Part I—Ultraviolet detectors and Part II—Visible to near-infrared detectors,” NIST Measurement Services SP 250-41 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

McSparron, D. A.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).

Metzdorf, J.

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Mielenz, K. D.

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Moller, W.

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

Möller, W.

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Nawo, B.

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

Ohno, Y.

Y. Ohno, “Improved photometric standards and calibration procedures at NIST,” J. Res. Natl. Inst. Stand. Technol. 102, 323–331 (1997).
[CrossRef]

Y. Ohno, “Photometric calibrations,” NIST Measurement Services SP 250-37 (National Institute of Standards and Technology, Gaithersburg, Md., 1997).

Parr, A. C.

J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
[CrossRef]

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,” Appl. Opt. 32, 2936–2948 (1993).
[CrossRef] [PubMed]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” NIST Tech. Note 1421 (National Institute of Standards and Technology, Gaithersburg, Md., 1996).

T. C. Larason, S. S. Bruce, A. C. Parr, “Spectroradiometric detector measurements: Part I—Ultraviolet detectors and Part II—Visible to near-infrared detectors,” NIST Measurement Services SP 250-41 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

Preston-Thomas, H.

H. Preston-Thomas, “The ITS-90,” Metrologia 27, 3–10 (1990).
[CrossRef]

Quinn, T. J.

T. J. Quinn, Temperature (Academic, London, 1990).

Sapritsky, V. I.

V. I. Sapritsky, “Black-body radiometry,” Metrologia 32, 411–427 (1995–1996).
[CrossRef]

Saunders, R. D.

J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).

Seckmeyer, G.

G. Bernhard, G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999).
[CrossRef]

Shumaker, J. B.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Sperfeld, P.

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Stock, K. D.

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Thompson, A.

A. Thompson, H. M. Chen, “Beamcon III: a linearity measurement instrument for optical detectors,” J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994).
[CrossRef]

Walker, J. H.

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).

Yoon, H. W.

H. W. Yoon, C. E. Gibson, “Comparison of the absolute detector-based spectral radiance assignment with the current NIST-assigned spectral radiance of tungsten strip lamps,” Metrologia 37, 429–432 (2000).
[CrossRef]

H. W. Yoon, C. E. Gibson, “Determination of radiance temperatures using detectors calibrated for absolute spectral power response,” in Proceedings of the Seventh International Symposium on Temperature and Thermal Measurements in Industry and Science, J. Dubbeldam, M. J. de Groot, eds. (Edauw and Johannisen, The Netherlands, 1999), pp. 737–742.

Adv. Geophys. (1)

H. J. Kostkowski, D. E. Erminy, A. T. Hattenburg, “High-accuracy spectral radiance calibration of tungten-strip lamps,” Adv. Geophys. 14, 111–127 (1970).
[CrossRef]

Appl. Opt. (2)

J. Geophys. Res. (1)

G. Bernhard, G. Seckmeyer, “Uncertainty of measurements of spectral solar UV irradiance,” J. Geophys. Res. 104, 14321–14345 (1999).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (5)

J. H. Walker, R. D. Saunders, J. K. Jackson, K. D. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

A. Thompson, H. M. Chen, “Beamcon III: a linearity measurement instrument for optical detectors,” J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Y. Ohno, “Improved photometric standards and calibration procedures at NIST,” J. Res. Natl. Inst. Stand. Technol. 102, 323–331 (1997).
[CrossRef]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Metrologia (7)

P. Sperfeld, J. Metzdorf, S. Gala Yousef, K. D. Stock, W. Möller, “Improvement and extension of the blackbody-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

V. I. Sapritsky, “Black-body radiometry,” Metrologia 32, 411–427 (1995–1996).
[CrossRef]

H. Preston-Thomas, “The ITS-90,” Metrologia 27, 3–10 (1990).
[CrossRef]

J. B. Fowler, R. D. Saunders, A. C. Parr, “Summary of the high-accuracy aperture-area measurement capabilities at the NIST,” Metrologia 37, 621–623 (2000).
[CrossRef]

H. W. Yoon, C. E. Gibson, “Comparison of the absolute detector-based spectral radiance assignment with the current NIST-assigned spectral radiance of tungsten strip lamps,” Metrologia 37, 429–432 (2000).
[CrossRef]

P. Sperfeld, S. Galal-Yousef, J. Metzdorf, B. Nawo, W. Moller, “The use of self-consistent calibrations to recover absorption bands in the black-body spectrum,” Metrologia 37, 373–376 (2000).
[CrossRef]

L. K. Huang, R. P. Cebula, E. Hilsenrath, “New procedure for interpolating NIST FEL lamp irradiances,” Metrologia 35, 381–386 (1998).
[CrossRef]

Other (6)

Y. Ohno, “Photometric calibrations,” NIST Measurement Services SP 250-37 (National Institute of Standards and Technology, Gaithersburg, Md., 1997).

A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” NIST Tech. Note 1421 (National Institute of Standards and Technology, Gaithersburg, Md., 1996).

T. J. Quinn, Temperature (Academic, London, 1990).

T. C. Larason, S. S. Bruce, A. C. Parr, “Spectroradiometric detector measurements: Part I—Ultraviolet detectors and Part II—Visible to near-infrared detectors,” NIST Measurement Services SP 250-41 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).

H. W. Yoon, C. E. Gibson, “Determination of radiance temperatures using detectors calibrated for absolute spectral power response,” in Proceedings of the Seventh International Symposium on Temperature and Thermal Measurements in Industry and Science, J. Dubbeldam, M. J. de Groot, eds. (Edauw and Johannisen, The Netherlands, 1999), pp. 737–742.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250-20 (National Bureau of Standards, Gaithersburg, Md., 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Measurement chain used to derive the source-based spectral irradiance scale used in the 1990 and 1992 scale realizations. (b) The measurement chain used in the new detector-based spectral irradiance scale of 2000.

Fig. 2
Fig. 2

Schematic of the laboratory setup used for the spectral irradiance scale realization showing the positions of the HTBB, the FRs, the spectroradiometer, and the FEL lamp.

Fig. 3
Fig. 3

Schematic of the filter radiometers used for the absolute temperature determination of the HTBB.

Fig. 4
Fig. 4

Absolute spectral irradiance responsivities of the FRs used in the scale realization. Both filter radiometers FR2 and FR4 are constructed with broadband photopic response filters that differ in responsivity only slightly below 400 nm.

Fig. 5
Fig. 5

(a) Expanded uncertainties of the NIST SCF for spectral power responsivity showing the low expanded uncertainties (0.22%) between 400 and 900 nm. (b) The uncertainties in the spectral power responsivity converted to temperature uncertainties by use of the derivative of the Wien approximation at 3000 K.

Fig. 6
Fig. 6

Temporal stability measurement of radiance temperatures with the FRs. The expanded uncertainties in temperature of ±0.86 K are shown for FR2. The temporal drift in the HTBB temperature is less than 0.5 K over the duration of the nearly 5-h monitoring time.

Fig. 7
Fig. 7

Spectral radiance differences of the HTBB from a single-temperature Planck radiance as assigned by use of the FRs to the spectral radiances assigned by use of the VTBB. The error bars indicate the 0.86 K expanded temperature uncertainty at 2950 K converted to spectral radiance uncertainties, and the continuous curves indicate the expanded uncertainties of the spectral radiance scale.

Fig. 8
Fig. 8

Spectral irradiance of the HTBB at 2950 K with the measurement parameters as described with the spectral irradiances of a typical 1000-W FEL lamp. The measurement parameters were chosen to closely match the signals of both sources.

Fig. 9
Fig. 9

Percent differences from the mean of three separate spectral irradiance scale realizations performed on four separate days. The differences are shown with the assigned expanded uncertainties of the working standards for the detector-based spectral irradiance scale.

Fig. 10
Fig. 10

Comparison of the expanded uncertainties of the 1990 scale realization along with the expanded uncertainties of the 2000 scale realization. The expanded uncertainties of the issued lamps are greater because of the additional component of the long-term temporal stability of the working standards.

Fig. 11
Fig. 11

(a) Comparison from 250 to 900 nm of the spectral irradiance assigned to the check standard lamps in 1992 with the detector-based spectral irradiance assignments. The expanded uncertainties assigned in 1990 are shown as the dark curve. The standard deviations of the mean of the three lamps are shown as open diamonds, indicating the good agreement between the three lamps. (b) A comparison from 800 to 2400 nm of the three check standard lamps of the 1990 spectral irradiance assignment with the detector-based spectral irradiance assignment. The standard deviations of the mean of the three lamps are shown as open diamonds along with the expanded uncertainties of the 1990 scale shown by the dark curve.

Fig. 12
Fig. 12

(a) Comparison from 250 to 900 nm of the difference of the average of the spectral irradiances assigned in 1992 of three working standards F234, F302, and F210 to the detector-based spectral irradiances. The curve indicates the expanded uncertainties of the 1992 spectral irradiance scale. (b) A comparison from 800 to 2400 nm of the working standard lamps of the differences of the 1990 spectral irradiance scale to the detector-based scale. The curve indicates the expanded uncertainties of the 1990 spectral irradiance assignments.

Tables (3)

Tables Icon

Table 1 Expanded Component Uncertainties in the Spectral Irradiance Measurement with the FR at 550 nm

Tables Icon

Table 2 Expanded Uncertainties of the Detector-Based 2000 Spectral Irradiance Scales of the Primary Working Standards and the Issued Standardsa

Tables Icon

Table 3 Comparison of the Expanded Uncertainties in the Spectral Irradiance Scales of the 1990 and 2000 Scale Realizations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S=GπrBB2πr21+δD2   RλLλ, Tdλ,
ΔLL=c2λΔTT2
Lλ,HTBB=Lλ,VTBBfλSλ,HTBBSλ,VTBB.
Eλ,HTBB=Lλ, TπrBB2D2,
Eλ,FEL=Eλ,HTBBfλSλ,FELSλ,HTBB,
ΔRR
ΔAA
ΔAA
ΔGG

Metrics