Abstract

A new method for measuring trace concentrations of atmospheric pollutants by infrared diode laser spectroscopy has been devised. This method relies on the increase of the signal as the pressure inside the cell increases, while the frequency of the diode is stabilized on the line, even if it is unresolved. Performances of this method were tested with N2O and with 1,3-butadiene. As an example of application, we measured the butadiene emitted by car exhausts. Sensitivity and rapidity of this method are equivalent to the usual scanning method in which the whole line is described, but this new method benefits from its simplicity and robustness.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
    [CrossRef]
  2. A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
    [CrossRef] [PubMed]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
    [CrossRef]
  4. M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
    [CrossRef]
  5. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
    [CrossRef] [PubMed]
  6. F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
    [CrossRef]
  7. A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
    [CrossRef]
  8. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983).
    [CrossRef] [PubMed]
  9. D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985).
    [CrossRef] [PubMed]
  10. A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
    [CrossRef]
  11. F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
    [CrossRef]
  12. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  13. G. Guelachvili, K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  14. R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
    [CrossRef]
  15. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
    [CrossRef]
  16. P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996).
    [CrossRef]
  17. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  18. B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
    [CrossRef]
  19. Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
    [CrossRef]
  20. A. Fayt, Université Catholique de Louvain, Belgium (personal communication, 1983).

1999

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
[CrossRef]

1998

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

1996

P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996).
[CrossRef]

1995

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

1994

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
[CrossRef] [PubMed]

F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
[CrossRef]

1991

1989

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

1988

1986

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

1985

1983

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Anders, J.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Chan, K. R.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

Chave, R. G.

Drummond, J. R.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
[CrossRef] [PubMed]

Duffy, B. L.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Fayt, A.

A. Fayt, Université Catholique de Louvain, Belgium (personal communication, 1983).

Fisher, H.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Fox, J.

Fried, A.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
[CrossRef] [PubMed]

Galbally, I. E.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Grisar, R.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Guelachvili, G.

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Harrad, S.

Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
[CrossRef]

Harris, G. W.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Harrison, R. M.

Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
[CrossRef]

Hastie, D. R.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985).
[CrossRef] [PubMed]

Henry, B.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
[CrossRef] [PubMed]

Hinkley, E. D.

Hoor, P.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Jänker, B.

P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996).
[CrossRef]

Jimenez, J. L.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Kebabian, P. L.

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Kendall, J.

Kim, Y. M.

Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
[CrossRef]

Knothe, M.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Königstedt, R.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lemoine, B.

F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
[CrossRef]

Loewenstein, M.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

Lübken, F.-J.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Mackay, G. I.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

May, R. D.

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Menzies, R. T.

Miller, M. D.

Mücke, R.

R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
[CrossRef]

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Nelson, P. F.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Podolske, J. R.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

Rao, K. N.

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Raynaud, F.

F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Riedel, W. J.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Rohart, F.

F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
[CrossRef]

Scheumann, B.

R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
[CrossRef]

Schiff, H. I.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Schilling, T.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Silver, J. A.

Slemr, F.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
[CrossRef]

Stanton, A. C.

Strahan, S. E.

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

Trimble, C. A.

Wagner, V.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Webster, C. R.

Weeks, I. A.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Werle, P.

P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996).
[CrossRef]

R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
[CrossRef]

Wert, B.

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

Wert, B. P.

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Wienhold, F. G.

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Ye, Y.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Atmos. Environ.

B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998).
[CrossRef]

Environ. Sci. Technol.

Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999).
[CrossRef]

J. Geophys. Res.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989).
[CrossRef]

J. Mol. Spectrosc.

F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994).
[CrossRef]

Opt. Eng.

P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Spectrochim. Acta Part A

A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999).
[CrossRef]

Other

G. Guelachvili, K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994).
[CrossRef]

A. Fayt, Université Catholique de Louvain, Belgium (personal communication, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. B.S., beam splitter; E.V., electromagnetic valve. Not represented on the figure are the flowmeters used for dilution of the sample when needed.

Fig. 2
Fig. 2

Typical curves of the N2O signal increase with pressure, for several mixing ratios. The signal is in arbitrary units.

Fig. 3
Fig. 3

Calibration curve for the N2O: measured mixing ratio versus injected N2O. The absolute calibration point was taken at 320 ppb.

Fig. 4
Fig. 4

Butadiene (lower curve) and ethylene (upper curve) spectra around 908 cm-1. Intensities are in arbitrary units. Peaks labeled P1, P2, and P3 were used in the preliminary experiments. Only P3 was found almost free of interferences produced by ethylene.

Fig. 5
Fig. 5

Calibration curve for 1,3-butadiene: measured mixing ratio versus injected butadiene. The absolute calibration point was taken at 1.23 ppm.

Tables (1)

Tables Icon

Table 1 Butadiene Measurements in Vehicle Exhaust Gasa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S=a0+γa1P+a2P2,

Metrics