Abstract

An experimental study of a rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser is reported. To rapidly shift laser wavelengths over selected transitions in the 9–11 µm wavelength region, we have utilized a high-frequency stepping motor and a diffraction grating. The laser is highly automated with a monolithic microprocessor controlled laser line selection. For the achievement of stable laser output, a system of laser excitation with a voltage of 10 kV, providing effective surface corona preionization and allowing one to work at various gas pressures, is utilized. Laser operation at 59 emission lines of the CO2 molecule rotational transition is obtained and at 51 lines, the pulse energy of laser radiation exceeds 30mJ. The system can be tuned between two different rotational lines spanning the wavelength range from 9.2 to 10.8 µm within 10 ms.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
    [CrossRef]
  2. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  3. V. O. Petukhov, V. A. Gorobets, A. A. Matsukevich, “Lidar/DIAL gas detection of atmosphere pollutants with H2O calibration,” in Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, Washington, D.C., 2000) p. 1.
  4. S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineer I, M. L. Stitch, E. G. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
    [CrossRef]
  5. F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
    [CrossRef] [PubMed]
  6. H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
    [CrossRef]
  7. J. Fox, J. L. Ahl, “High speed tuning mechanism for CO2 lidar systems,” Appl. Opt. 25, 3830–3834 (1986).
    [CrossRef] [PubMed]
  8. Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
    [CrossRef]
  9. A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
    [CrossRef]
  10. A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
    [CrossRef]
  11. D. C. Thompson, C. J. Hewitt, C. W. Wilson, “Rapidly-tunable acousto-optic spectrometer for a space environment,” in Photonics for Space Environments VII, E. W. Taylor, ed., Proc. SPIE4134, 138–150 (2000).
    [CrossRef]
  12. T. Gasmi, H. Zeaiter, G. M. Ropero, “Frequency agile CO2-TEA laser based DIAL-lidar system for range-resolved urban pollution monitoring,” in Conference on Lasers and Electro-Optics (CLEO/Europe), (Optical Society of America, Washington, D.C., 1998) p. 110.
    [CrossRef]
  13. F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

2000

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

1995

1993

F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

1988

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

1986

1985

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

1982

F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
[CrossRef] [PubMed]

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Adam, P.

Ahl, J. L.

Aiken, S.

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineer I, M. L. Stitch, E. G. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

Augustinus, A.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Begley, D. L.

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Carlisle, C. B.

Carr, L. W.

Chiaroni, J.-P.

Coraor, L. D.

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Crocker, A.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Faxvog, F. R.

Fox, J.

Gasmi, T.

T. Gasmi, H. Zeaiter, G. M. Ropero, “Frequency agile CO2-TEA laser based DIAL-lidar system for range-resolved urban pollution monitoring,” in Conference on Lasers and Electro-Optics (CLEO/Europe), (Optical Society of America, Washington, D.C., 1998) p. 110.
[CrossRef]

Gorobets, V. A.

V. O. Petukhov, V. A. Gorobets, A. A. Matsukevich, “Lidar/DIAL gas detection of atmosphere pollutants with H2O calibration,” in Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, Washington, D.C., 2000) p. 1.

Heidary, H. R.

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Hewitt, C. J.

D. C. Thompson, C. J. Hewitt, C. W. Wilson, “Rapidly-tunable acousto-optic spectrometer for a space environment,” in Photonics for Space Environments VII, E. W. Taylor, ed., Proc. SPIE4134, 138–150 (2000).
[CrossRef]

Holly, S.

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineer I, M. L. Stitch, E. G. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

Hosseini, H. D.

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Hu, X.

F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

Hu, X. Y.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

Jenkins, R. M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Johnson, M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Karapuzikov, A. I.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Kusters, J. F.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Liu, F.

F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

Liu, F. M.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

Matsukevich, A. A.

V. O. Petukhov, V. A. Gorobets, A. A. Matsukevich, “Lidar/DIAL gas detection of atmosphere pollutants with H2O calibration,” in Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, Washington, D.C., 2000) p. 1.

Matvienko, G. G.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Mocker, H. W.

Petukhov, V. O.

V. O. Petukhov, V. A. Gorobets, A. A. Matsukevich, “Lidar/DIAL gas detection of atmosphere pollutants with H2O calibration,” in Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, Washington, D.C., 2000) p. 1.

Ponomarev, Yu. N.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Ptashnik, I. V.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Qu, Y. C.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

Ren, D.-M.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

Romanovskii, O. A.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Ropero, G. M.

T. Gasmi, H. Zeaiter, G. M. Ropero, “Frequency agile CO2-TEA laser based DIAL-lidar system for range-resolved urban pollution monitoring,” in Conference on Lasers and Electro-Optics (CLEO/Europe), (Optical Society of America, Washington, D.C., 1998) p. 110.
[CrossRef]

Rye, B. J.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Sherstov, I. V.

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

Thompson, D. C.

D. C. Thompson, C. J. Hewitt, C. W. Wilson, “Rapidly-tunable acousto-optic spectrometer for a space environment,” in Photonics for Space Environments VII, E. W. Taylor, ed., Proc. SPIE4134, 138–150 (2000).
[CrossRef]

van der Laan, J. E.

Wilson, C. W.

D. C. Thompson, C. J. Hewitt, C. W. Wilson, “Rapidly-tunable acousto-optic spectrometer for a space environment,” in Photonics for Space Environments VII, E. W. Taylor, ed., Proc. SPIE4134, 138–150 (2000).
[CrossRef]

Wolters, W.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Yan Ouk, J. W.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Zeaiter, H.

T. Gasmi, H. Zeaiter, G. M. Ropero, “Frequency agile CO2-TEA laser based DIAL-lidar system for range-resolved urban pollution monitoring,” in Conference on Lasers and Electro-Optics (CLEO/Europe), (Optical Society of America, Washington, D.C., 1998) p. 110.
[CrossRef]

Zhao, J.

F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

Zhao, J.-S.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

Appl. Opt.

Infrared Phys.

A. Augustinus, J. F. Kusters, B. J. Rye, J. W. Yan Ouk, W. Wolters, “Computer control of frequency tunable CO2 lasers,” Infrared Phys. 28, 397–403 (1988).
[CrossRef]

Infrared Phys. Technol.

Y. C. Qu, X. Y. Hu, F. M. Liu, D.-M. Ren, J.-S. Zhao, “Rapidly tuning Miniature TEA CO2 laser—rotating mirror and grating mechanism,” Infrared Phys. Technol. 41, 143–147 (2000).
[CrossRef]

A. I. Karapuzikov, I. V. Ptashnik, I. V. Sherstov, O. A. Romanovskii, G. G. Matvienko, Yu. N. Ponomarev, “Modeling of helicopter-borne tunable TEA CO2 DIAL system employment for detection of methane and ammonia leakages,” Infrared Phys. Technol. 41, 87–96 (2000).
[CrossRef]

J. Phys. E

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Laser Technol.

F. Liu, X. Hu, J. Zhao, “Performance of a high repetition rate TEA CO2 laser improved,” Laser Technol. 17, 282–284 (1993), in Chinese.

Opt. Laser Technol.

H. D. Hosseini, D. L. Begley, H. R. Heidary, L. D. Coraor, “A microprocessor-controlled laser grating system for laser tuning,” Opt. Laser Technol. 14, 137–142 (1982).
[CrossRef]

Other

V. O. Petukhov, V. A. Gorobets, A. A. Matsukevich, “Lidar/DIAL gas detection of atmosphere pollutants with H2O calibration,” in Conference on Lasers and Electro-Optics (CLEO/Europe) (Optical Society of America, Washington, D.C., 2000) p. 1.

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineer I, M. L. Stitch, E. G. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

D. C. Thompson, C. J. Hewitt, C. W. Wilson, “Rapidly-tunable acousto-optic spectrometer for a space environment,” in Photonics for Space Environments VII, E. W. Taylor, ed., Proc. SPIE4134, 138–150 (2000).
[CrossRef]

T. Gasmi, H. Zeaiter, G. M. Ropero, “Frequency agile CO2-TEA laser based DIAL-lidar system for range-resolved urban pollution monitoring,” in Conference on Lasers and Electro-Optics (CLEO/Europe), (Optical Society of America, Washington, D.C., 1998) p. 110.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental configuration of tuning system.

Fig. 2
Fig. 2

The oscillogram of stepping pulse waveform.

Fig. 3
Fig. 3

Schematic diagram of infrared photoelectric transducer.

Fig. 4
Fig. 4

Schematic cross section of the laser head.

Fig. 5
Fig. 5

Laser energy vs. time under various pressure (CO2:N2:He = 1:1:3).

Fig. 6
Fig. 6

Dependence of laser pulse energy as a function of emission wavelength.

Fig. 7
Fig. 7

Laser pulse waveform of 10P(20) line at use of gaseous mixture CO2:N2:He = 1:1:3 (5.32 × 104Pa).

Fig. 8
Fig. 8

Laser pulse waveform of 10P(20) line at use of a plasma-shutter pulse clipper.

Fig. 9
Fig. 9

Oscillogram of rapid tuning laser 10P(12) and 10P(20) lines within 10 ms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dsin α+sin θ=kλ,
2d sin θ=kλ.
R=λδλ=kN,

Metrics