Abstract

One of the new problems that has to be solved for segmented mirrors is related to periodic phasing, because for such mirrors to exhibit diffraction-limited performance the segments have to be positioned with an accuracy of a fraction of a wavelength. We describe the optical design of an instrument that measures the phasing errors (i.e., tip, tilt, and piston) between two segments under daylight conditions. Its design is based on a high-aperture white-light Michelson interferometer. It was developed at the Center for Sensors, Instruments and Systems Development (CD6) of the Technical University of Catalunya, Spain, and its final testing was carried out on the Gran Telescopio Canarias test workbench.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998).
    [CrossRef]
  2. G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
    [CrossRef]
  3. M. Owner-Petersen, T. Andersen, “Overview of optical metrology for segment phasing,” in Workshop on Extremely Large Telescopes (E. Jurlander, Lund, Sweden, 1999), pp. 152–161.
  4. A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.
  5. G. Chanan, C. Ohara, M. Troy, “Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm,” Appl. Opt. 39, 4706–4714 (2000).
    [CrossRef]
  6. A. Weitheimer, T. Dey, “Wide-range, high-accuracy, white light piston sensor for segmented optics,” Opt. Eng. 34, 2149–2156 (1995).
    [CrossRef]
  7. J. T. Watson, “Experimental study of mirror segment phasing using tungsten light,” Opt. Eng. 27, 758–761 (1988).
    [CrossRef]
  8. N. C. Mehta, C. Allen, “Remote alignment of segmented mirrors with far-field optimization,” Appl. Opt. 31, 6510–6518 (1992).
    [CrossRef] [PubMed]
  9. G. Chanan, M. Troy, S. Sirko, “Phasing the Keck telescopes with out-of-focus images in the infrared,” Appl. Opt. 38, 704–713 (1999).
    [CrossRef]
  10. V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
    [CrossRef]
  11. J. M. Rodriguez-Ramos, J. J. Fuensalida, “Phasing segmented mirrors: new algorithm and numerical results for piston detection,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 270–278 (2000).
    [CrossRef]
  12. H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
    [CrossRef]
  13. R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
    [CrossRef]
  14. K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
    [CrossRef]
  15. B. Jacobsen, R. Angel, “High accuracy wavefront stellar wavefront sensing using a Zernike interferometer,” Bull. Am. Astron. Soc. 26, 1373–1381 (1994).
  16. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–922 (1988).
    [CrossRef]
  17. R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase diversity wavefront sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
    [CrossRef] [PubMed]
  18. M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
    [CrossRef]
  19. S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
    [CrossRef]
  20. GTC Project Office, ed., GTC Conceptual Design (Grantecan S.A.1997), http://www.jtc.iac.es .

2000 (1)

1999 (1)

1998 (1)

1995 (1)

A. Weitheimer, T. Dey, “Wide-range, high-accuracy, white light piston sensor for segmented optics,” Opt. Eng. 34, 2149–2156 (1995).
[CrossRef]

1994 (2)

B. Jacobsen, R. Angel, “High accuracy wavefront stellar wavefront sensing using a Zernike interferometer,” Bull. Am. Astron. Soc. 26, 1373–1381 (1994).

R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase diversity wavefront sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
[CrossRef] [PubMed]

1992 (2)

H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
[CrossRef]

N. C. Mehta, C. Allen, “Remote alignment of segmented mirrors with far-field optimization,” Appl. Opt. 31, 6510–6518 (1992).
[CrossRef] [PubMed]

1988 (2)

J. T. Watson, “Experimental study of mirror segment phasing using tungsten light,” Opt. Eng. 27, 758–761 (1988).
[CrossRef]

R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–922 (1988).
[CrossRef]

Acton, D. S.

R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase diversity wavefront sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
[CrossRef] [PubMed]

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Allen, C.

Andersen, T.

M. Owner-Petersen, T. Andersen, “Overview of optical metrology for segment phasing,” in Workshop on Extremely Large Telescopes (E. Jurlander, Lund, Sweden, 1999), pp. 152–161.

Angel, R.

B. Jacobsen, R. Angel, “High accuracy wavefront stellar wavefront sensing using a Zernike interferometer,” Bull. Am. Astron. Soc. 26, 1373–1381 (1994).

Basinger, S. A.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Bernotas, L. A.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Blum, J. D.

H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
[CrossRef]

Burns, L. A.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Chanan, G.

Cohen, D.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Corbett, E. G.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Cuevas, S.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Decortiat, F.

K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
[CrossRef]

Dekens, F.

Devaney, N.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

Dey, T.

A. Weitheimer, T. Dey, “Wide-range, high-accuracy, white light piston sensor for segmented optics,” Opt. Eng. 34, 2149–2156 (1995).
[CrossRef]

Dierickx, P.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

Dohlen, K.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
[CrossRef]

Duncan, A. L.

R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase diversity wavefront sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
[CrossRef] [PubMed]

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Fienup, J. R.

Fresneau, F.

K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
[CrossRef]

Fuensalida, J. J.

J. M. Rodriguez-Ramos, J. J. Fuensalida, “Phasing segmented mirrors: new algorithm and numerical results for piston detection,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 270–278 (2000).
[CrossRef]

Garfias, F.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Harwit, A.

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Horton, R. F.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Huber, E. E.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Humphreys, R. A.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Jacobsen, B.

B. Jacobsen, R. Angel, “High accuracy wavefront stellar wavefront sensing using a Zernike interferometer,” Bull. Am. Astron. Soc. 26, 1373–1381 (1994).

Kendrick, R. L.

R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase diversity wavefront sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994).
[CrossRef] [PubMed]

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Kirkman, D.

Klumpe, H. W.

H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
[CrossRef]

Lajza-Rooks, B. A.

H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
[CrossRef]

Lanzoni, P.

K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
[CrossRef]

Liu, K. Y.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Lofdahl, M. G.

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Lowman, A. E.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Mast, T.

G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998).
[CrossRef]

G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
[CrossRef]

Mehta, N. C.

Michaels, S.

Mitvhell, K. E.

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Montoya, L.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

Nelson, J.

G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998).
[CrossRef]

G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
[CrossRef]

Norton, J. M.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Ohara, C.

Orlov, V. G.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Owner-Petersen, M.

M. Owner-Petersen, T. Andersen, “Overview of optical metrology for segment phasing,” in Workshop on Extremely Large Telescopes (E. Jurlander, Lund, Sweden, 1999), pp. 152–161.

Paxman, R. G.

R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–922 (1988).
[CrossRef]

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Redding, D. C.

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

Roberts, A. V.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Rodriguez-Ramos, J. M.

J. M. Rodriguez-Ramos, J. J. Fuensalida, “Phasing segmented mirrors: new algorithm and numerical results for piston detection,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 270–278 (2000).
[CrossRef]

Sanchez, L. J.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Schaefer, B.

G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
[CrossRef]

Schumaker, A.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

Seldin, J. H.

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

Sirko, S.

Troy, M.

Voitsekhovich, V. V.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Watson, J. T.

J. T. Watson, “Experimental study of mirror segment phasing using tungsten light,” Opt. Eng. 27, 758–761 (1988).
[CrossRef]

Weitheimer, A.

A. Weitheimer, T. Dey, “Wide-range, high-accuracy, white light piston sensor for segmented optics,” Opt. Eng. 34, 2149–2156 (1995).
[CrossRef]

Wizinowich, P. L.

G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
[CrossRef]

Yee, L. G. B.

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

Appl. Opt. (5)

Bull. Am. Astron. Soc. (1)

B. Jacobsen, R. Angel, “High accuracy wavefront stellar wavefront sensing using a Zernike interferometer,” Bull. Am. Astron. Soc. 26, 1373–1381 (1994).

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

A. Weitheimer, T. Dey, “Wide-range, high-accuracy, white light piston sensor for segmented optics,” Opt. Eng. 34, 2149–2156 (1995).
[CrossRef]

J. T. Watson, “Experimental study of mirror segment phasing using tungsten light,” Opt. Eng. 27, 758–761 (1988).
[CrossRef]

Rev. Sci. Instrum. (1)

H. W. Klumpe, B. A. Lajza-Rooks, J. D. Blum, “Absolute phasing of segmented mirrors using the polarization phase sensor,” Rev. Sci. Instrum. 63, 1698–1706 (1992).
[CrossRef]

Other (10)

R. F. Horton, E. E. Huber, L. A. Bernotas, L. G. B. Yee, A. V. Roberts, J. M. Norton, E. G. Corbett, R. A. Humphreys, “Absolute piston phasing of segmented-mirror optical systems using depth-modulated white-light interferometry,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 974–984 (1990).
[CrossRef]

K. Dohlen, F. Decortiat, F. Fresneau, P. Lanzoni, “Dual-wavelength random-phase-shift interferometer for phasing large segmented primaries,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 551–559 (1998).
[CrossRef]

M. G. Lofdahl, R. L. Kendrick, A. Harwit, K. E. Mitvhell, A. L. Duncan, J. H. Seldin, R. G. Paxman, D. S. Acton, “A phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope,” in Space Telescopes and Instruments V, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE3356, 1190–1201 (1998).
[CrossRef]

S. A. Basinger, D. C. Redding, A. E. Lowman, L. A. Burns, K. Y. Liu, D. Cohen, “Performance of wavefront sensing and control algorithms on a segmented telescope testbed,” in UV, Optical and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 749–756 (2000).
[CrossRef]

GTC Project Office, ed., GTC Conceptual Design (Grantecan S.A.1997), http://www.jtc.iac.es .

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sanchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

J. M. Rodriguez-Ramos, J. J. Fuensalida, “Phasing segmented mirrors: new algorithm and numerical results for piston detection,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 270–278 (2000).
[CrossRef]

G. Chanan, J. Nelson, T. Mast, P. L. Wizinowich, B. Schaefer, “W. M. Keck Telescope phasing camera system,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 1139–1150 (1994).
[CrossRef]

M. Owner-Petersen, T. Andersen, “Overview of optical metrology for segment phasing,” in Workshop on Extremely Large Telescopes (E. Jurlander, Lund, Sweden, 1999), pp. 152–161.

A. Schumaker, L. Montoya, N. Devaney, K. Dohlen, P. Dierickx, “Phasing ELT’s for adaptive optics: preliminary results of a comparison of techniques,” presented at the Beyond Conventional Adaptive Optics Conference, Venice, Italy, 7–10 May 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Reference system: the Y axis is defined along the direction locally perpendicular to the intersegment, and the Z axis is oriented along the direction of the intersegment. (b) Relative angular misalignment. (c) Relative vertical misalignment (piston). (b), (c) Images extracted from the GTC web site (http://www.gtc.iac.es).

Fig. 2
Fig. 2

The interferometric instrument: RB, reference beam; MB, measurement beam.

Fig. 3
Fig. 3

Twyman-Green variation of the classic Michelson interferometer layout: FD3, D3 focal object point; F′D4, D4 focal image point; D3, D4, doublets; BSC, beam-splitter cube.

Fig. 4
Fig. 4

Three-dimensional optical layout of the interferometer (the segments are not to scale). M1–M3, mirrors; D3–D5, doublets.

Fig. 5
Fig. 5

Insertion of an afocal system into observation arms (D4 and D5) to image the intersegmental region on the detector plane combined with the interferogram fringes: FD3, D3 focal object point, F′D4, D4 focal image point; FD5, D5 focal object point; D3 to D5, doublets; BSC, beam-splitter cube.

Fig. 6
Fig. 6

Optical path maps after the wave front leaves the D3 collimator, presented as contour plots: (a) point light source on axis, (b) point light source placed at the edge of the object field of the collimator (300 µm) when the paraxial component has been subtracted (λ = 632.8 nm; contour step λ/100).

Fig. 7
Fig. 7

Optical path maps after the wave front leaves the beam-splitter cube, presented as contour plots: (a) point light source on axis; (b) point light source placed at the edge of the finite extent of the source (300 µm) when the paraxial component is subtracted (λ = 632.8 nm; contour step λ/100).

Fig. 8
Fig. 8

Optical path maps after the wave front crosses crossing the afocal imaging system, presented as contour plots: (a) point light source on axis, (b) point light source placed at the edge of the finite extent of the source (300 µm) when the paraxial component has been subtracted (λ = 632.8 nm; contour step λ/10). Note the equivalence of the two plots, which ensures that the afocal system does not distort the interferograms that are recorded.

Fig. 9
Fig. 9

Deviations along the tangential and sagittal sections of the wave fronts depicted in Fig. 8, corresponding to an on-axis and an edge-of-field point light source. The maximum deviation remains less than λ/50.

Fig. 10
Fig. 10

Real interferograms obtained with the instrument that we have designed in a piston-phasing-error measurement range of 12 µm. The actual piston is 0 µm (phased segments): interferograms obtained with (a) monochromatic light (λ = 632.8 nm) and (b) white light.

Fig. 11
Fig. 11

Real interferograms obtained with the instrument that we have designed in a piston-phasing-error measurement range of 12 µm. The actual piston is +8 µm. Interferograms obtained with (a) monochromatic light (λ = 632.8 nm) and (b) white light.

Fig. 12
Fig. 12

Picture of the phasing instrument in the laboratory: OF, optical filter; OFP, optical filter positioner; M1–M5, mirrors; MP1, MP3, mirror positions; BSC, beam-splitter cube; D3–D5, doublets.

Metrics