Abstract

Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. Lin, “Hologram formation in hardened dichromated gelatin films.” Appl. Opt. 8, 963–966 (1969).
    [CrossRef] [PubMed]
  2. R. K. Curran, T. A. Shankoff, “The mechanism of hologram formation in the dichromated gelatin,” Appl. Opt. 9, 1651–1657 (1970).
    [CrossRef] [PubMed]
  3. B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  4. T. G. Georgekutty, H. K. Liu, “Simplified dichromated gelatin hologram recording process,” Appl. Opt. 26, 372–376 (1987).
    [CrossRef] [PubMed]
  5. G. M. Naik, A. Mathur, S. V. Pappu, “Dichromated gelatin holograms: an investigation of their environmental stability,” Appl. Opt. 29, 5292–5297 (1990).
    [CrossRef] [PubMed]
  6. S. Lelièvre, J. J. A. Couture, “Dichromated polyvinyl alcohol films used as a novel polarization real time holographic recording material,” Appl. Opt. 29, 4384–4391 (1990).
    [CrossRef] [PubMed]
  7. M. Barikani, E. Simova, M. Kavehard, “Dichromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
    [CrossRef] [PubMed]
  8. R. Grzymala, T. Keinonen, “Self-enhancement of holographic gratings in dichromated gelatin and polyvinyl alcohol films,” Appl. Opt. 37, 6623–6626 (1998).
    [CrossRef]
  9. K. Wang, L. Guo, L. Zhou, J. Zhu, “Imaging mechanism of the holographic recording material dichromated cellulose triacetate,” Appl. Opt. 35, 6369–6374 (1996).
    [CrossRef] [PubMed]
  10. K. Yokono, K. Nishide, “Hologram and method of production thereof from polysaccharide recording layer,” U.S. patent4,254,193 (3March1981).
  11. T. Sano, Y. Uemura, A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U.S. patent3,960,685 (1June1976).
  12. D. Pantelić, S. Savić, D. Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 23, 807–809 (1998).
    [CrossRef]
  13. J. C. Newell, L. Solymar, A. A. Ward, “Holograms in dichromated gelatin: real-time effects,” Appl. Opt. 24, 4460–4466 (1985).
    [CrossRef] [PubMed]
  14. S. Calixto, R. A. Lessard, “Real-time holography with undeveloped dichromated gelatin films,” Appl. Opt. 23, 1989–1994 (1984).
    [CrossRef] [PubMed]
  15. R. A. Bartolini, “Characteristics of relief phase holograms recorded in photoresists,” Appl. Opt. 13, 129–139 (1974).
    [CrossRef] [PubMed]
  16. T. Kubota, “Recording of high quality color holograms,” Appl. Opt. 25, 4141–4145 (1986).
    [CrossRef] [PubMed]
  17. L. Xiong, B. Peng, “Effect of the content of ammonium dichromate in dichromated gelatin on Cr2P3/2 x-ray photoelectron spectroscopy,” Appl. Opt. 38, 279–283 (1999)
    [CrossRef]

1999 (1)

1998 (2)

1996 (1)

1995 (1)

1990 (2)

1987 (1)

1986 (1)

1985 (1)

1984 (1)

1979 (1)

1974 (1)

1970 (1)

1969 (1)

Barikani, M.

Bartolini, R. A.

Calixto, S.

Chang, B. J.

Couture, J. J. A.

Curran, R. K.

Furuta, A.

T. Sano, Y. Uemura, A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U.S. patent3,960,685 (1June1976).

Georgekutty, T. G.

Grzymala, R.

Guo, L.

Jakovljevic, D.

Kavehard, M.

Keinonen, T.

Kubota, T.

Lelièvre, S.

Leonard, C. D.

Lessard, R. A.

Lin, L. H.

Liu, H. K.

Mathur, A.

Naik, G. M.

Newell, J. C.

Nishide, K.

K. Yokono, K. Nishide, “Hologram and method of production thereof from polysaccharide recording layer,” U.S. patent4,254,193 (3March1981).

Pantelic, D.

Pappu, S. V.

Peng, B.

Sano, T.

T. Sano, Y. Uemura, A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U.S. patent3,960,685 (1June1976).

Savic, S.

Shankoff, T. A.

Simova, E.

Solymar, L.

Uemura, Y.

T. Sano, Y. Uemura, A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U.S. patent3,960,685 (1June1976).

Wang, K.

Ward, A. A.

Xiong, L.

Yokono, K.

K. Yokono, K. Nishide, “Hologram and method of production thereof from polysaccharide recording layer,” U.S. patent4,254,193 (3March1981).

Zhou, L.

Zhu, J.

Appl. Opt. (14)

L. H. Lin, “Hologram formation in hardened dichromated gelatin films.” Appl. Opt. 8, 963–966 (1969).
[CrossRef] [PubMed]

R. K. Curran, T. A. Shankoff, “The mechanism of hologram formation in the dichromated gelatin,” Appl. Opt. 9, 1651–1657 (1970).
[CrossRef] [PubMed]

B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
[CrossRef] [PubMed]

T. G. Georgekutty, H. K. Liu, “Simplified dichromated gelatin hologram recording process,” Appl. Opt. 26, 372–376 (1987).
[CrossRef] [PubMed]

G. M. Naik, A. Mathur, S. V. Pappu, “Dichromated gelatin holograms: an investigation of their environmental stability,” Appl. Opt. 29, 5292–5297 (1990).
[CrossRef] [PubMed]

S. Lelièvre, J. J. A. Couture, “Dichromated polyvinyl alcohol films used as a novel polarization real time holographic recording material,” Appl. Opt. 29, 4384–4391 (1990).
[CrossRef] [PubMed]

M. Barikani, E. Simova, M. Kavehard, “Dichromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
[CrossRef] [PubMed]

R. Grzymala, T. Keinonen, “Self-enhancement of holographic gratings in dichromated gelatin and polyvinyl alcohol films,” Appl. Opt. 37, 6623–6626 (1998).
[CrossRef]

K. Wang, L. Guo, L. Zhou, J. Zhu, “Imaging mechanism of the holographic recording material dichromated cellulose triacetate,” Appl. Opt. 35, 6369–6374 (1996).
[CrossRef] [PubMed]

J. C. Newell, L. Solymar, A. A. Ward, “Holograms in dichromated gelatin: real-time effects,” Appl. Opt. 24, 4460–4466 (1985).
[CrossRef] [PubMed]

S. Calixto, R. A. Lessard, “Real-time holography with undeveloped dichromated gelatin films,” Appl. Opt. 23, 1989–1994 (1984).
[CrossRef] [PubMed]

R. A. Bartolini, “Characteristics of relief phase holograms recorded in photoresists,” Appl. Opt. 13, 129–139 (1974).
[CrossRef] [PubMed]

T. Kubota, “Recording of high quality color holograms,” Appl. Opt. 25, 4141–4145 (1986).
[CrossRef] [PubMed]

L. Xiong, B. Peng, “Effect of the content of ammonium dichromate in dichromated gelatin on Cr2P3/2 x-ray photoelectron spectroscopy,” Appl. Opt. 38, 279–283 (1999)
[CrossRef]

Opt. Lett. (1)

Other (2)

K. Yokono, K. Nishide, “Hologram and method of production thereof from polysaccharide recording layer,” U.S. patent4,254,193 (3March1981).

T. Sano, Y. Uemura, A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U.S. patent3,960,685 (1June1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Transmittance spectra of DCP film.

Fig. 2
Fig. 2

Real-time amplitude transmittance of DCP film versus energy density.

Fig. 3
Fig. 3

Experimental setup for recording and reading diffraction grating.

Fig. 4
Fig. 4

Real-time diffraction efficiency versus energy density.

Fig. 5
Fig. 5

Real-time diffraction efficiency versus energy density. The power density is a parameter.

Fig. 6
Fig. 6

(a) Exposure time versus power density. (b) Energy density versus power density.

Fig. 7
Fig. 7

Real-time diffraction efficiency versus exposure time. The dichromate concentration is a parameter.

Fig. 8
Fig. 8

Diffraction efficiency (after processing) versus concentration of ammonium dichromate.

Fig. 9
Fig. 9

Diffraction efficiency versus energy density in real time and postprocessing.

Fig. 10
Fig. 10

Spatial-frequency response of DCP (after processing).

Metrics