Abstract

We present an empirical model for the waveguiding properties of directly UV-written planar waveguides in silica-on-silicon. The waveguides are described by a rectangular core step-index profile, in which model parameters are found by comparison of the measured waveguide width and effective index with modal field calculations. The model is used as input for beam propagation method calculations to design UV-written optical components. Subsequent fabrication of such components showed a good agreement with the model predictions. Using the model will reduce the number of iterations and thereby the development time of new optical devices.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
    [CrossRef]
  2. M. Svalgaard, M. Kristensen, “Directly written silica-on-silicon planar waveguides with low loss,” Electron. Lett. 33, 861–863 (1997).
    [CrossRef]
  3. M. Svalgaard, “Zero-birefringence UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD-7.
  4. D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
    [CrossRef]
  5. M. Svalgaard, “Direct writing of planar waveguide power splitter and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694–1695 (1997).
    [CrossRef]
  6. J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
    [CrossRef]
  7. G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
    [CrossRef]
  8. M. Svalgaard, A. Harpøth, L. Leick, “Empirical model for the waveguiding properties of directly UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2001), BThC32.
  9. M. Svalgaard, “Effect of D2 outdiffusion on direct UV writing of optical waveguides,” Electron. Lett. 35, 1840–1842 (1999).
    [CrossRef]
  10. H. Renner, “Modes of UV-written planar waveguides,” Opt. Lett. 23, 111–113 (1998).
    [CrossRef]
  11. K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum. Electron. 11, 185–196 (1979).
    [CrossRef]
  12. Y. P. Li, C. Henry, “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996).
    [CrossRef]

1999 (1)

M. Svalgaard, “Effect of D2 outdiffusion on direct UV writing of optical waveguides,” Electron. Lett. 35, 1840–1842 (1999).
[CrossRef]

1998 (2)

H. Renner, “Modes of UV-written planar waveguides,” Opt. Lett. 23, 111–113 (1998).
[CrossRef]

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

1997 (2)

M. Svalgaard, “Direct writing of planar waveguide power splitter and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694–1695 (1997).
[CrossRef]

M. Svalgaard, M. Kristensen, “Directly written silica-on-silicon planar waveguides with low loss,” Electron. Lett. 33, 861–863 (1997).
[CrossRef]

1996 (1)

Y. P. Li, C. Henry, “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996).
[CrossRef]

1995 (1)

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

1994 (1)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

1979 (1)

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum. Electron. 11, 185–196 (1979).
[CrossRef]

Ainslie, B. J.

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

Bjarklev, A.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

Feuchter, T.

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Harpøth, A.

M. Svalgaard, A. Harpøth, L. Leick, “Empirical model for the waveguiding properties of directly UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2001), BThC32.

Henry, C.

Y. P. Li, C. Henry, “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996).
[CrossRef]

Hübner, J.

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Kristensen, M.

M. Svalgaard, M. Kristensen, “Directly written silica-on-silicon planar waveguides with low loss,” Electron. Lett. 33, 861–863 (1997).
[CrossRef]

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Kulstad, K.

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

Leick, L.

M. Svalgaard, A. Harpøth, L. Leick, “Empirical model for the waveguiding properties of directly UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2001), BThC32.

Li, Y. P.

Y. P. Li, C. Henry, “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996).
[CrossRef]

Maxwell, G. D.

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

Pedersen, J. E.

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Poulsen, C. V.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Poulsen, M. R.

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

Poulsen, O.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

Ratje, J.

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

Renner, H.

Svalgaard, M.

M. Svalgaard, “Effect of D2 outdiffusion on direct UV writing of optical waveguides,” Electron. Lett. 35, 1840–1842 (1999).
[CrossRef]

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

M. Svalgaard, M. Kristensen, “Directly written silica-on-silicon planar waveguides with low loss,” Electron. Lett. 33, 861–863 (1997).
[CrossRef]

M. Svalgaard, “Direct writing of planar waveguide power splitter and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694–1695 (1997).
[CrossRef]

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

M. Svalgaard, A. Harpøth, L. Leick, “Empirical model for the waveguiding properties of directly UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2001), BThC32.

M. Svalgaard, “Zero-birefringence UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD-7.

White, K. I.

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum. Electron. 11, 185–196 (1979).
[CrossRef]

Zauner, D.

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

Electron. Lett. (6)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, O. Poulsen, “Direct UV-writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[CrossRef]

M. Svalgaard, M. Kristensen, “Directly written silica-on-silicon planar waveguides with low loss,” Electron. Lett. 33, 861–863 (1997).
[CrossRef]

D. Zauner, K. Kulstad, J. Ratje, M. Svalgaard, “Directly UV written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett. 34, 1582–1584 (1998).
[CrossRef]

M. Svalgaard, “Direct writing of planar waveguide power splitter and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33, 1694–1695 (1997).
[CrossRef]

G. D. Maxwell, B. J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[CrossRef]

M. Svalgaard, “Effect of D2 outdiffusion on direct UV writing of optical waveguides,” Electron. Lett. 35, 1840–1842 (1999).
[CrossRef]

IEE Proc. Optoelectron. (1)

Y. P. Li, C. Henry, “Silica-based optical integrated circuits,” IEE Proc. Optoelectron. 143, 263–280 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum. Electron. (1)

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum. Electron. 11, 185–196 (1979).
[CrossRef]

Other (3)

M. Svalgaard, A. Harpøth, L. Leick, “Empirical model for the waveguiding properties of directly UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2001), BThC32.

J. Hübner, C. V. Poulsen, J. E. Pedersen, M. R. Poulsen, T. Feuchter, M. Kristensen, “UV-written Y-splitter in Ge-doped silica,” in Functional Photonic and Fiber Devices, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE2695, 98–105 (1996).
[CrossRef]

M. Svalgaard, “Zero-birefringence UV written waveguides,” in Digest of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 1999), postdeadline paper PD-7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical bright-field image of a waveguide fabricated with standard clean-room techniques. The waveguide has a square index profile, and each index edge gives rise to a series of dark and bright bands.

Fig. 2
Fig. 2

(A) Optical bright-field image of a UV-written waveguide. (B) The image intensity perpendicular to the waveguide axis for two slightly different focus positions of the optical microscope. The assigned waveguide width, as shown by the arrow, is independent of the focus position.

Fig. 3
Fig. 3

Assigned width of UV-written waveguides as a function of the applied scan velocity.

Fig. 4
Fig. 4

Measured effective index of UV-written waveguides as a function of the applied scan velocity. The dotted line shows the estimated effective index value for the slab structure.

Fig. 5
Fig. 5

Calculated change in effective index as a function of the width for a step index of 0.004 (diamonds), 0.006 (triangles), 0.008 (circles), and 0.010 (squares). The figure also shows the measured change in effective index as a function of the width (open circles), for a width scaling factor of 1.0.

Fig. 6
Fig. 6

Derived equivalent step index for UV-written waveguides as a function of the applied scan velocity for a width scaling factor of 0.8 (circles), 1.0 (triangles), and 1.2 (squares).

Fig. 7
Fig. 7

Equivalent step index derived for standard clean-room fabricated waveguides as a function of their width. The size of the error bars is mainly given by the uncertainty of the core layer height. The figure also shows the step-index value interval stated by the manufacturer as the cross-hatched area.

Fig. 8
Fig. 8

Measured (symbols) and calculated (curves) coupling ratios for UV-written directional couplers. The width scaling factor used in the calculations is 1.0. The length of the central coupling region is 10 mm (left side of the graph) and 20 mm (right side of the graph).

Fig. 9
Fig. 9

Measured (solid curve) and simulated (circles) wavelength dependency of UV-written directional couplers with (A) a coupling region length of 10 mm and a center-to-center separation of 14.4 µm and (B) a coupling region length of 20 mm and a center-to-center separation of 16.0 µm.

Metrics