Abstract

We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (μs′) and the absorption coefficient (μa) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
    [CrossRef]
  2. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
    [CrossRef]
  3. R. Richards-Kortum, E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  4. C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
    [CrossRef]
  5. M. Keijzer, R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  6. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
    [CrossRef] [PubMed]
  7. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
    [CrossRef] [PubMed]
  8. A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
    [CrossRef] [PubMed]
  9. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebert, “Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [CrossRef]
  10. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [CrossRef]
  11. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
    [CrossRef] [PubMed]
  12. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
    [CrossRef] [PubMed]
  13. B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.
  14. T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  15. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. Van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1765 (1996).
    [CrossRef] [PubMed]
  16. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  17. M. S. Patterson, B. W. Pogue, “Mathematical model for time resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  18. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
    [CrossRef] [PubMed]
  19. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  20. R. H. Mayer, J. S. Reynolds, E. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
    [CrossRef]
  21. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
    [CrossRef] [PubMed]
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, pp. 175–178.
  23. C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
    [CrossRef] [PubMed]
  24. A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
    [CrossRef] [PubMed]
  25. A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
    [CrossRef]
  26. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  27. B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).
  28. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  29. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  30. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  31. M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
    [CrossRef] [PubMed]
  32. V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  33. W. Schmidt, “Fluorescence properties of isotropically embedded flavins,” Photochem. Photobiol. 34, 7–16 (1981).
  34. G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
    [CrossRef]

2001 (2)

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

1997 (1)

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

1996 (7)

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. Van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1765 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[CrossRef] [PubMed]

1995 (3)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

1994 (2)

1993 (1)

1992 (2)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

1990 (1)

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

1989 (2)

1983 (1)

1981 (1)

W. Schmidt, “Fluorescence properties of isotropically embedded flavins,” Photochem. Photobiol. 34, 7–16 (1981).

1976 (1)

Agarwal, A.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
[CrossRef]

Akins, D. L.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Alfano, R. R.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

Avrillier, S.

Babai, F.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Balassy, A.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Bays, R.

Blanchard, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Boas, D. A.

Bohren, C. F.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bottiroli, G.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Braichotte, D.

Bulter, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Burke, G.

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Calmer, E.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Caron, A.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chan, E.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Chance, B.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

Cleary, J.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Criswell, G.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Croce, A. C.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Cuzzoni, C.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Dalfante, M.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Das, B. B.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Di Palma, S.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Durkin, A. J.

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
[CrossRef] [PubMed]

Durocher, G.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Ettori, D.

Fantini, S.

Farrell, T. J.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.

Feld, M. S.

Ferwerda, H. A.

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Franceschini, M. A.

Frank, G. L.

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Gaboury, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Gardner, C. M.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

Gelebert, B.

Ghosh, N.

A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
[CrossRef]

Glassman, W. L.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Groenhuis, R. A. J.

Hoffman, D. R.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Hutchinson, C. L.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Hyde, D. E.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Ishimaru, A.

Jacques, S. L.

Jaikumar, S.

Johnson, C.

Kaschke, M.

Keijzer, M.

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Lakowicz, J. R.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Laxmi, B. V.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Li, X. D.

Liu, C. H.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Locatelli, D.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Lubicz, S. S.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Marchesini, R.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Mayer, R. H.

Mittal, D. K.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Moesta, K. T.

Monnier, P.

Nair, M. S.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
[CrossRef]

O’Leary, M. A.

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Pal, P.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Panda, R. N.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Patterson, M. S.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.

Peters, V. C.

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pfefer, J.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Pignoli, E.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Pogue, B. W.

Pradhan, A.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
[CrossRef]

Prudente, R.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Ramanujam, N.

Rastogi, A.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Rava, R. P.

Reynolds, J. S.

Reynolds, L.

Richards-Kortum, R.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
[CrossRef] [PubMed]

M. Keijzer, R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

Robert, D.

Savary, J. F.

Schlag, P. M.

Schmidt, W.

W. Schmidt, “Fluorescence properties of isotropically embedded flavins,” Photochem. Photobiol. 34, 7–16 (1981).

Sevick Muraca, E.

R. Richards-Kortum, E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Sevick-Muraca, E.

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Sha, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Spinelli, P.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Tang, G. C.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

Ten Bosch, J. J.

Tinet, E.

Tomatis, S.

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tualle, J. M.

Van den Bergh, H.

Villeneuve, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Wagnieres, G.

Walker, S. A.

Warren, S.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

Wilson, B. C.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.

Wu, J.

Wyman, D. R.

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yodh, A. G.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

Yoo, K. M.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Zhu, H. R.

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum, E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (13)

L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
[CrossRef] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
[CrossRef] [PubMed]

M. Keijzer, R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebert, “Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
[CrossRef]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

R. H. Mayer, J. S. Reynolds, E. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. Van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1765 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

Biophys. J. (1)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. (1)

C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
[CrossRef]

J. Photochem. Photobiol. B (1)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
[CrossRef]

Lasers Life Sci. (1)

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Lasers Surg. Med. (4)

G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)
[CrossRef]

A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
[CrossRef] [PubMed]

A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “ A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

W. Schmidt, “Fluorescence properties of isotropically embedded flavins,” Photochem. Photobiol. 34, 7–16 (1981).

Phys. Med. Biol. (2)

V. C. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Other (4)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, pp. 175–178.

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.

A. Pradhan, M. S. Nair, N. Ghosh, A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 194–199 (2000).
[CrossRef]

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Typical fit of 〈ρ(μeff)〉 to the empirical equation [a 0/(μeff exi) a1]. Circles, Monte Carlo–generated values of ρ0; dotted curve, theoretical fit to the empirical equation a 0/(μeff exi) a1. (b) Typical fit of 〈zeff)〉 to the empirical equation a 0/(μeff exi) a1. Circles, Monte Carlo–generated values of z 0; dotted curve, theoretical fit to the empirical equation a 0/(μeff exi) a1.

Fig. 2
Fig. 2

Typical spatial variation of the fluorescence profile generated by use of the Monte Carlo simulation code (dotted curve) and the diffusion theory–generated data (solid curve). The values of μ s ′ at the excitation and emission wavelengths used in the simulation are 6 and 4 mm-1, respectively. The values for μ a at the excitation and emission wavelengths used are 0.2 and 0.02 mm-1, respectively. The inset shows the percentage error with distance from the excitation point in the region of 0.65–4 mm.

Fig. 3
Fig. 3

(a) Fluorescence spectra recorded from five different spatially separated points of a tissue phantom; r represents the radial distance from the beam center. (b) The values of μ s ′ estimated for tissue phantoms having different concentrations of microspheres (0.61µm in diameter) (open symbols). Mie theory–computed values are shown by dotted curves. The concentration of methylene blue and riboflavin were 20µM and 20µM for all the tissue phantoms. (c) The estimated values of μ a for different tissue phantoms (circles) and the corresponding spectrophotometrically measured values (dotted curve). The concentration of microspheres for this phantom was 3.6 × 1010/c.c.

Fig. 4
Fig. 4

Experimentally measured spatial variation of 488-nm-excited 530-nm fluorescence profile (circles) of a malignant breast tissue. Dotted curve, the theoretical fit to Eq. (14). The estimated values for μ s ′ and μ a of the malignant tissue were 2.7 and 0.05 mm-1, respectively.

Fig. 5
Fig. 5

Fluorescence spectra recorded from three different spatial positions of a ductal carcinoma breast tissue. The inset shows the normalized fluorescence intensity at these positions; r represents the radial distance from the beam center.

Fig. 6
Fig. 6

Fluorescence spectra recorded from three different spatial positions of a normal breast tissue. The inset shows the normalized fluorescence intensity at these positions; r represents the radial distance from the beam center.

Fig. 7
Fig. 7

Fluorescence spectra recorded from three different spatial positions of a pericanalicular fibroadenoma breast tissue. The inset shows the normalized fluorescence intensity at these positions; r represents the radial distance from the beam center.

Tables (1)

Tables Icon

Table 1 Estimated Values for μ s ′ and μ a at 530-, 550-, and 590-nm Emission Wavelengths for All the Tissue Types Investigated along with Their Standard Deviations

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

dIdf/ds=-μt Idfr, s+μt/4π ps, s×Idfr, sdω+fr, s,
fr, s=ϕμaIdexir, s+Iriexir, s,
Idfr, s=Udfr+3/4πFdfrs,
Fdfr=-4πμaUdfr+Efr,
Efr=fr, sdω.
Fdfr=-μa Idfr, sdω+ fr, sdω.
Udfr=-3/4π1-p1μtFdfr+3/4π fr, sdω,
1/4π ps, sss dω.
2Udfr-μeff2Udfr=-3/4πμtrEfr+3/4π  fr, sdω.
2Udfr-μeff2Udfr=-Qfr,
Qfr=-3ϕμaμtrUdexir, s+Uriexir, s+3/4π  fr, sdω.
Udexir=1/4π Idexir, sdω,Uriexir=1/4π Iriexir, sdω.
2Udfr-μeff2Udfr=-3ϕμaμtrUexidr, s+Uexirir, s.
ρμeff=ρ0=0.65/μeffexi0.6, zμeff=z0=0.85/μeffexi0.6.
Rfρ,0=Ffr/I0=Rfr=ϕμa/4π×z0μeff+1/r1exp-μeff1r/r12+z0+2zbμeff+1/r2exp-μeffr2/r22,
r12=z02+ρ-ρ02,r22=z0+2zb2+ρ-ρ02,
zb=2AD,
A=1+rd/1-rd,
rd=-1.4399n-2+0.7099n-1+0.6681+0.0639n.
Rtotr=ϕμa/2z0/z02+ρ021/2×exp-μeffz02+ρ021/2+z0+2zb/z0+2zb2+ρ021/2×exp-μeffz0+2zb2+ρ201/2.
μs=NAsQs,

Metrics