Abstract

Direct photolithographic deforming of hybrid glass films is used to fabricate optical structures. The structure is fabricated in polyethylene-oxide-acrylate modified hybrid glass films with (1) binary and gray-scale photomasks using a mercury UV-lamp exposure and (2) maskless UV-laser patterning. Fabrication of isolated lenslets, lens arrays, and gratings is presented, including the associated exposure patterns. The hybrid glass material yields light-induced deformation peak-to-valley (p.v.) heights up to 12.8 µm with mercury UV-lamp exposure and p.v. deformation heights up to 6.8 µm with 365-nm UV-laser exposure. The fabricated lenslets’ surface data are presented as Zernike-polynomial fit coefficients. Material synthesis and processing-related aspects are examined to understand and control the material’s deformation under exposure. The hybrid glass material exhibits a maximum spectral extinction coefficient of 1.6 × 10-3 µm-1 at wavelengths ranging from 450 to 2200 nm and has a refractive index of 1.52 at 632.8 nm. The fabricated structures exhibit rms surface roughness between 1 and 5 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).
  2. M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996).
    [CrossRef]
  3. E. J. Gratix, “Evolution of a microlens surface under etching conditions,” in Miniature and Micro-optics and Micromechanics, N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 266–274 (1993).
    [CrossRef]
  4. J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
    [CrossRef]
  5. P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
    [CrossRef]
  6. J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
    [CrossRef]
  7. B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
    [CrossRef]
  8. S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, O. Parriaux, “Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses,” Appl. Opt. 38, 6744–6748 (1999).
    [CrossRef]
  9. J. T. Rantala, A. H. O. Kärkkäinen, J. A. Hiltunen, M. Keränen, T. Kololuoma, M. R. Descour, “UV light induced surface expansion phenomenon of hybrid glass thin films,”Opt. Express 8, 682–687 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
    [CrossRef]
  11. L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer (Noyes Publications, Park Ridge, N.J., 1998), pp.63–79, and references therein.
    [CrossRef]
  12. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [CrossRef]
  13. S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).
  14. S. Sinzinger, J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999), pp.85–127, and references therein.
  15. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  16. C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
    [CrossRef]
  17. M. Ornelas-Rodriquez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
    [CrossRef]
  18. M. Kufner, S. Kufner, Micro-Optics and Lithography (Vubpress, Brussels, 1997).
  19. D. M. Hartmann, O. Kibar, S. C. Esener, “Optimization and theoretical modeling of polymer microlens arrays fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001).
    [CrossRef]
  20. L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997).
    [CrossRef]
  21. L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
    [CrossRef]
  22. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  23. ZEMAX is a product of Focus Software, Incorporated, Tucson, Arizona 85731, http://www.focus-software.com .
  24. J. M. Tamkin, J. P. Donahue, “High efficiency laser pattern generator,” U.S. patent6,084,706 (4July2000).
  25. K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

2001 (4)

2000 (3)

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

1999 (2)

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, O. Parriaux, “Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses,” Appl. Opt. 38, 6744–6748 (1999).
[CrossRef]

1998 (3)

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

1997 (2)

L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997).
[CrossRef]

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

1996 (1)

M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996).
[CrossRef]

1989 (1)

K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

1976 (1)

Andrews, M. P.

Äyräs, P.

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Blanc, D.

Boilot, J.-P.

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Calixto, S.

M. Ornelas-Rodriquez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[CrossRef]

Calvo, M. L.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Chaput, F.

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Cheben, P.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Croutxé-Barghorn, C.

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

Darracq, B.

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

de Veyrac, G.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Descour, M. R.

J. T. Rantala, A. H. O. Kärkkäinen, J. A. Hiltunen, M. Keränen, T. Kololuoma, M. R. Descour, “UV light induced surface expansion phenomenon of hybrid glass thin films,”Opt. Express 8, 682–687 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Donahue, J. P.

J. M. Tamkin, J. P. Donahue, “High efficiency laser pattern generator,” U.S. patent6,084,706 (4July2000).

Douay, M.

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

Eisner, M.

M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996).
[CrossRef]

Esener, S. C.

Fiorini, C.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Gratix, E. J.

E. J. Gratix, “Evolution of a microlens surface under etching conditions,” in Miniature and Micro-optics and Micromechanics, N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 266–274 (1993).
[CrossRef]

Hartmann, D. M.

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).

Hench, L. L.

L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer (Noyes Publications, Park Ridge, N.J., 1998), pp.63–79, and references therein.
[CrossRef]

Hiltunen, J. A.

Honkanen, S.

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Jahns, J.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999), pp.85–127, and references therein.

Kärkkäinen, A. H. O.

Keränen, M.

Kibar, O.

Kivimäki, L.

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

Kololuoma, T.

Komenou, K.

S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).

Kufner, M.

M. Kufner, S. Kufner, Micro-Optics and Lithography (Vubpress, Brussels, 1997).

Kufner, S.

M. Kufner, S. Kufner, Micro-Optics and Lithography (Vubpress, Brussels, 1997).

Lahlil, K.

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Lavielle, L.

L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997).
[CrossRef]

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

Levy, R.

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Lévy, Y.

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Lougnot, D. J.

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

Lougnot, D.-J.

L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997).
[CrossRef]

Maurin, I.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Muka, E.

K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

Najafi, S. I.

Niay, P.

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).

Noll, R.

Nunzi, J.-M.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Ornelas-Rodriquez, M.

M. Ornelas-Rodriquez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[CrossRef]

Parriaux, O.

Pelissier, S.

Peyghambarian, N.

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Prudhomme, N.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Raimond, P.

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Rantala, J. T.

J. T. Rantala, A. H. O. Kärkkäinen, J. A. Hiltunen, M. Keränen, T. Kololuoma, M. R. Descour, “UV light induced surface expansion phenomenon of hybrid glass thin films,”Opt. Express 8, 682–687 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

J. T. Rantala, P. Äyräs, R. Levy, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schuller, E.

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

Schwider, J.

M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996).
[CrossRef]

Sinzinger, S.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999), pp.85–127, and references therein.

Smektala, F.

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

Sramek, R.

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).

Suzuki, S.

S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).

Tamkin, J. M.

J. M. Tamkin, J. P. Donahue, “High efficiency laser pattern generator,” U.S. patent6,084,706 (4July2000).

Tishchenko, A. V.

Todokoru, Y.

S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Xie, W. X.

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

Yip, K.-L.

K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

Adv. Mater. (2)

B. Darracq, F. Chaput, K. Lahlil, Y. Lévy, J.-P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Electron. Lett. (1)

J. T. Rantala, R. Levy, L. Kivimäki, M. R. Descour, “Direct UV patterning of thick hybrid glass films for micro-opto-mechanical structures,” Electron. Lett. 16, 530–531 (2000).
[CrossRef]

J. Imaging Sci. Technol. (1)

K.-L. Yip, E. Muka, “MTF analysis and spot size selection for continuous-tone laser printers,” J. Imaging Sci. Technol. 15, 202–212 (1989).

J. Non-Cryst. Solids (1)

R. Sramek, F. Smektala, W. X. Xie, M. Douay, P. Niay, “Photoinduced surface expansion of fluorizirconate glasses,”J. Non-Cryst. Solids 277, 39–44 (2000), and references therein.
[CrossRef]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. A (2)

L. Lavielle, D.-J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 1. Irreversible thermodynamics analysis,” J. Photochem. Photobiol. A 102, 245–251 (1997).
[CrossRef]

L. Lavielle, C. Croutxé-Barghorn, E. Schuller, D. J. Lougnot, “Self-organisation in dry photopolymerized acrylate films. 2. General experimental description,” J. Photochem. Photobiol. A 104, 213–215 (1997).
[CrossRef]

Opt. Eng. (2)

M. Ornelas-Rodriquez, S. Calixto, “Direct laser writing of mid-infrared microelements on polyethylene material,” Opt. Eng. 40, 921–925 (2001).
[CrossRef]

M. Eisner, J. Schwider, “Transferring resist lenses into silicon by RIE,” Opt. Eng. 10, 2979–2982 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Synth. Met. (1)

C. Fiorini, N. Prudhomme, G. de Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, “Molecular migration mechanism for laser induced surface relief grating formation,” Synth. Met. 115, 121–125 (2000).
[CrossRef]

Thin Solid Films (1)

P. Äyräs, J. T. Rantala, R. Levy, M. R. Descour, S. Honkanen, N. Peyghambarian, “Multilevel structures in sol-gel thin films with a single UV-exposure using a gray-scale mask,” Thin Solid Films 352, 9–12 (1999).
[CrossRef]

Other (8)

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).

E. J. Gratix, “Evolution of a microlens surface under etching conditions,” in Miniature and Micro-optics and Micromechanics, N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 266–274 (1993).
[CrossRef]

L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer (Noyes Publications, Park Ridge, N.J., 1998), pp.63–79, and references therein.
[CrossRef]

S. Suzuki, Y. Todokoru, K. Komenou, “Process for the production of optical elements,” U.S. patent4,877,717 (24July1989).

S. Sinzinger, J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999), pp.85–127, and references therein.

M. Kufner, S. Kufner, Micro-Optics and Lithography (Vubpress, Brussels, 1997).

ZEMAX is a product of Focus Software, Incorporated, Tucson, Arizona 85731, http://www.focus-software.com .

J. M. Tamkin, J. P. Donahue, “High efficiency laser pattern generator,” U.S. patent6,084,706 (4July2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Surface-topography measurement of a segment of a printed diffraction grating (70.0-µm period, 4.46-µm p.v. height). (a) 3D image, (b) 1D profile of the printed structure. The profile in (b) is measured perpendicular to the grating lines.

Fig. 2
Fig. 2

Surface-topography measurement of a segment of a printed convex lens array (10.6-µm lens diameter and 0.87-µm height). (a) 3D image, (b) 1D profile of the printed structure. The profile in (b) is measured along the 121.5-µm side of the image in (a).

Fig. 3
Fig. 3

Surface-topography measurement of a segment of a printed concave lens array (54.2-µm lens diameter and 0.70-µm height). The concave sag depth was measured to be 0.13 µm. (a) 3D image, (b) 1D profile of the printed structure. The profile in (b) is measured along the 121.5-µm side of the image in (a).

Fig. 4
Fig. 4

Surface-topography measurement of a printed single convex lens (86.5-µm lens diameter and 4.15-µm height). (a) 3D image, (b) 1D profile of the printed structure. The profile in (b) is measured along the 243.8-µm side of the image in (a).

Fig. 5
Fig. 5

Surface-topography measurement of a segment of a printed convex lens array (lens width, 480 µm; lens sag, 1.57 µm; a gray-scale photomask was used). (a) Perspective view of the surface topography, (b) 1D, diagonal profile of the printed structure.

Fig. 6
Fig. 6

Optical density versus radial distance dependence for a gray-scale photomask single-lens pattern. The radial variation of optical density shown in this figure was used to create the surface shown in Fig. 5. Note that this curve shows the variation of optical density along a diagonal direction on the photomask [Fig. 5 (a)]. The single-lens pattern is rotationally symmetric to a radial distance of 240 µm.

Fig. 7
Fig. 7

Surface-topography measurement of a segment of a printed concave lens array. The lenslets are formed with a gray-scale photomask. Each lenslet aperture measures 260 µm on a side. The concave sag of the printed surface is 1.56 µm. (a) Perspective view of the surface, (b) diagonal profile of one lenslet’s printed surface.

Fig. 8
Fig. 8

Dependence of optical density versus radial distance for a gray-scale photomask single-lens pattern. The radial variation of optical density shown in this figure was used to create the surface shown in Fig. 7. Note that this curve shows the variation of optical density along a diagonal direction on the photomask [Fig. 7 (a)]. The single-lens pattern is rotationally symmetric to a radial distance of 130 µm.

Fig. 9
Fig. 9

Surface-topography measurement of a segment of UV-laser-written diffraction grating. The grating parameters are 100-µm period; FWHM linewidth, 61.7 µm; space width, 42.2 µm; average p.v. height, 1.93 µm; and exposure dose, 10 mJ/cm2. (a) Perspective image, (b) profile of the printed structure.

Fig. 10
Fig. 10

Aerial image formed by the LDI phototool. The shown normalized-irradiance profile is in the cross-scan direction. Spot size for this phototool was measured to be 10 µm, FWHM.

Fig. 11
Fig. 11

Dependence of linewidth and space width on exposure dose of the UV laser for the hybrid glass material.

Tables (4)

Tables Icon

Table 1 Summary of the Used Masks and Fabricated Structures

Tables Icon

Table 2 Standard Zernike-Polynomial Fit Coefficients for the Surface Shown in Fig. 4 a

Tables Icon

Table 3 Standard Zernike-Polynomial Fit Coefficients for the Surface Shown in Fig. 5 a

Tables Icon

Table 4 Standard Zernike-Polynomial Fit Coefficients for the Surface Shown in Fig. 7 a

Metrics