Abstract

A noncontact, nonmechanical scanning, wide-field spectral interference microscope is developed for simultaneous measurement of three-dimensional step-height of discontinuous objects and tomographic imaging. A superluminescent diode (SLD) is used as a broadband light source and a liquid-crystal Fabry–Perot interferometer (LC-FPI) as a frequency-scanning device. By means of changing the injection current to the SLD, the spectral profile of the SLD is equalized, and a constant light input to the interferometer is achieved over the entire frequency-scan range. The Fourier-transform technique is used to determine both the amplitude and the phase of spectral fringe signals. The three-dimensional height distribution of a discontinuous object is obtained from the phase information, whereas optically sectioned images of the object are obtained either from the amplitude information alone or from the combination of both the amplitude and phase information. Experimental results with submicrometer resolution are presented for both step-height measurement and tomographic sectioning.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Sommergren, “Optical heterodyne interferometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef]
  2. K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.
  3. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  4. T. Dressel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef]
  5. L. Deck, P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  8. M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
    [CrossRef] [PubMed]
  9. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  10. H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
    [CrossRef]
  11. S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [CrossRef] [PubMed]
  12. A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
    [CrossRef]
  13. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).
    [CrossRef]
  14. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
    [CrossRef]
  15. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
    [CrossRef]
  16. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  17. T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).
  18. H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
    [CrossRef]
  19. K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  20. S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
    [CrossRef]
  21. H. Hiratsuka, E. Kido, T. Yoshimura, “Simultaneous measurements of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998).
    [CrossRef]

2001

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

2000

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

1999

1998

1997

1996

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

1994

1993

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

1992

1991

M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

1990

1985

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

1982

1981

A. Kingsley, S.

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

A. Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Barnes, T. H.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

Creath, K.

K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.

Davies, D. E.

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

De Groot, P.

Deck, L.

Dressel, T.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Eiju, T.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franze, B.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Haible, P.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Hausler, G.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Hiratsuka, H.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ina, H.

Kido, E.

Kim, M. K.

Kinoshita, M.

Kobayashi, S.

Kuo, C. C.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Kurokawa, T.

M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
[CrossRef]

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Kuwamura, S.

Lee, B. S.

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Matsuda, K.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sommergren, G. E.

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Strand, T. C.

Suematsu, M.

Sunouchi, K.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tashiro, H.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Tiziani, H. J.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Tohmori, T.

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Tsuda, H.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Venzke, H.

Wada, S.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Watanabe, Y.

Yago, H.

Yamaguchi, I.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

Yamamoto, A.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Yamamoto, H.

Yoshimura, T.

Appl. Opt.

Electron. Lett.

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

J. Lightwave Technol.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

J. Mod. Opt.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Optik

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics