Abstract

High-quality Y2O3–ZrO2 single-crystal rectangular waveguides have been developed for ultrahigh-temperature sensing applications. Five waveguides, 0.55–1.12 mm wide and 52–65 mm long, were fabricated from a bulky cubic 21.2-mol. % Y2O3 stabilized ZrO2 single crystal that had been precisely cut and finely polished. At 900-nm wavelength, the average optical loss of these waveguides is approximately 0.016 dB/cm, which is much lower than that of Y2O3–ZrO2 single-crystal optical fibers grown by the laser-heated pedestal growth method. The tested waveguides survived a temperature higher than 2300 °C, and their mechanical strength and chemical resistance were also acceptable. Experimental results show that these waveguides are promising for ultrahigh-temperature sensing applications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Dils, “High temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
    [CrossRef]
  2. H. Amick, “Optical fiber sensors broaden temperature measurement limits,” Research and Development, Report (Accufiber, Inc., Vancouver, Wash., 1986), pp. 64–66.
  3. L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).
  4. L. Tong, Y. Wang, Z. Ding, “Growth and characteristics of Y-ZrO2 single-crystal fiber (SCF) for high-temperature optic sensors,” in Fiber Optic and Laser Sensors XII, R. P. DePaula, ed., Proc. SPIE2292, 429–438 (1994).
    [CrossRef]
  5. L. Tong, “Study on growth and properties of Y2O3–ZrO2 single-crystal fibers for fiber-optic sensors,” M.S. thesis (Zhejiang University, Hangzhou, China, 1994).
  6. L. Tong, “Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors,” J. Cryst. Growth 217, 281–286 (2000).
    [CrossRef]
  7. L. Tong, Y. Shen, L. Ye, Z. Ding, “A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 °C,” Meas. Sci. Technol. 10, 607–611 (1999).
    [CrossRef]
  8. L. Tong, Y. Shen, F. Chen, L. Ye, “Plastic bending of sapphire fibers for infrared sensing and power-delivery applications,” Appl. Opt. 39, 494–501 (2000).
    [CrossRef]
  9. M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, eds., Proc. SPIE2290, 378–386 (1994).
    [CrossRef]
  10. B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1977).
  11. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
  12. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [CrossRef] [PubMed]
  13. H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
    [CrossRef]
  14. D. R. Lide, Handbook of Chemistry and Physics, 80th ed. (CRC Press, New York, 1999).
  15. A. H. Heuer, L. W. Hobbs, Advances in Ceramics, Vol. 3, Science and Technology of Zirconia (American Ceramic Society, Columbus, Ohio, 1981).
  16. Y. Shen, L. Tong, Y. Wang, L. Ye, “Sapphire-fiber thermometer ranging from 20 to 1800 °C,” Appl. Opt. 38, 1139–1143 (1999).
    [CrossRef]

2000

L. Tong, “Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors,” J. Cryst. Growth 217, 281–286 (2000).
[CrossRef]

L. Tong, Y. Shen, F. Chen, L. Ye, “Plastic bending of sapphire fibers for infrared sensing and power-delivery applications,” Appl. Opt. 39, 494–501 (2000).
[CrossRef]

1999

Y. Shen, L. Tong, Y. Wang, L. Ye, “Sapphire-fiber thermometer ranging from 20 to 1800 °C,” Appl. Opt. 38, 1139–1143 (1999).
[CrossRef]

L. Tong, Y. Shen, L. Ye, Z. Ding, “A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 °C,” Meas. Sci. Technol. 10, 607–611 (1999).
[CrossRef]

1993

1991

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

1983

R. R. Dils, “High temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Amick, H.

H. Amick, “Optical fiber sensors broaden temperature measurement limits,” Research and Development, Report (Accufiber, Inc., Vancouver, Wash., 1986), pp. 64–66.

Chen, F.

Detlaf, A.

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1977).

Dils, R. R.

R. R. Dils, “High temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Ding, Z.

L. Tong, Y. Shen, L. Ye, Z. Ding, “A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 °C,” Meas. Sci. Technol. 10, 607–611 (1999).
[CrossRef]

L. Tong, Y. Wang, Z. Ding, “Growth and characteristics of Y-ZrO2 single-crystal fiber (SCF) for high-temperature optic sensors,” in Fiber Optic and Laser Sensors XII, R. P. DePaula, ed., Proc. SPIE2292, 429–438 (1994).
[CrossRef]

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

Dong, M.

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

Feigelson, R. S.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Harrington, J. A.

Heuer, A. H.

A. H. Heuer, L. W. Hobbs, Advances in Ceramics, Vol. 3, Science and Technology of Zirconia (American Ceramic Society, Columbus, Ohio, 1981).

Hobbs, L. W.

A. H. Heuer, L. W. Hobbs, Advances in Ceramics, Vol. 3, Science and Technology of Zirconia (American Ceramic Society, Columbus, Ohio, 1981).

Klocek, P.

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics, 80th ed. (CRC Press, New York, 1999).

Merberg, G. N.

Perrotta, A. J.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Shen, Y.

Tong, L.

L. Tong, Y. Shen, F. Chen, L. Ye, “Plastic bending of sapphire fibers for infrared sensing and power-delivery applications,” Appl. Opt. 39, 494–501 (2000).
[CrossRef]

L. Tong, “Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors,” J. Cryst. Growth 217, 281–286 (2000).
[CrossRef]

L. Tong, Y. Shen, L. Ye, Z. Ding, “A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 °C,” Meas. Sci. Technol. 10, 607–611 (1999).
[CrossRef]

Y. Shen, L. Tong, Y. Wang, L. Ye, “Sapphire-fiber thermometer ranging from 20 to 1800 °C,” Appl. Opt. 38, 1139–1143 (1999).
[CrossRef]

L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).

L. Tong, “Study on growth and properties of Y2O3–ZrO2 single-crystal fibers for fiber-optic sensors,” M.S. thesis (Zhejiang University, Hangzhou, China, 1994).

L. Tong, Y. Wang, Z. Ding, “Growth and characteristics of Y-ZrO2 single-crystal fiber (SCF) for high-temperature optic sensors,” in Fiber Optic and Laser Sensors XII, R. P. DePaula, ed., Proc. SPIE2292, 429–438 (1994).
[CrossRef]

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

Wang, Y.

Y. Shen, L. Tong, Y. Wang, L. Ye, “Sapphire-fiber thermometer ranging from 20 to 1800 °C,” Appl. Opt. 38, 1139–1143 (1999).
[CrossRef]

L. Tong, Y. Wang, Z. Ding, “Growth and characteristics of Y-ZrO2 single-crystal fiber (SCF) for high-temperature optic sensors,” in Fiber Optic and Laser Sensors XII, R. P. DePaula, ed., Proc. SPIE2292, 429–438 (1994).
[CrossRef]

Wu, H. F.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Yavorsky, B.

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1977).

Ye, L.

Appl. Opt.

J. Appl. Phys.

R. R. Dils, “High temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

J. Cryst. Growth

L. Tong, “Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors,” J. Cryst. Growth 217, 281–286 (2000).
[CrossRef]

J. Mater. Sci. Lett.

H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991).
[CrossRef]

Meas. Sci. Technol.

L. Tong, Y. Shen, L. Ye, Z. Ding, “A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 °C,” Meas. Sci. Technol. 10, 607–611 (1999).
[CrossRef]

Other

M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, H. H. Yuce, D. K. Paul, R. A. Greenwell, eds., Proc. SPIE2290, 378–386 (1994).
[CrossRef]

B. Yavorsky, A. Detlaf, Handbook of Physics (Mir, Moscow, 1977).

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).

H. Amick, “Optical fiber sensors broaden temperature measurement limits,” Research and Development, Report (Accufiber, Inc., Vancouver, Wash., 1986), pp. 64–66.

L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).

L. Tong, Y. Wang, Z. Ding, “Growth and characteristics of Y-ZrO2 single-crystal fiber (SCF) for high-temperature optic sensors,” in Fiber Optic and Laser Sensors XII, R. P. DePaula, ed., Proc. SPIE2292, 429–438 (1994).
[CrossRef]

L. Tong, “Study on growth and properties of Y2O3–ZrO2 single-crystal fibers for fiber-optic sensors,” M.S. thesis (Zhejiang University, Hangzhou, China, 1994).

D. R. Lide, Handbook of Chemistry and Physics, 80th ed. (CRC Press, New York, 1999).

A. H. Heuer, L. W. Hobbs, Advances in Ceramics, Vol. 3, Science and Technology of Zirconia (American Ceramic Society, Columbus, Ohio, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photograph of a finished Y2O3–ZrO2 rectangular waveguide (sample 4 in Table 1).

Fig. 2
Fig. 2

Improved loss measurement system for Y2O3–ZrO2 rectangular waveguides.

Fig. 3
Fig. 3

Average loss of as-grown Y2O3–ZrO2 waveguides, Y2O3–ZrO2 fibers, and sapphire fibers.

Fig. 4
Fig. 4

Wavelength-dependent optical loss of waveguide 3 within 500–1000 nm.

Fig. 5
Fig. 5

STF of rectangular Y2O3–ZrO2 waveguides and Y2O3–ZrO2 fibers.

Fig. 6
Fig. 6

Configuration of the Y2O3–ZrO2 waveguide-fiber-optic sensor system.

Tables (3)

Tables Icon

Table 1 Geometric Parameters of the Finished Y2O3–ZrO2 Waveguides

Tables Icon

Table 2 Statistic Distributions of Microdefects on the Surfaces of the Waveguidesa

Tables Icon

Table 3 Test Parameters of the Y2O3–ZrO2 Waveguides in Oxyhydrogen Flames

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=L2L2-L110 log10P1P2.

Metrics